问题
Is there a Pool class for worker threads, similar to the multiprocessing module\'s Pool class?
I like for example the easy way to parallelize a map function
def long_running_func(p):
c_func_no_gil(p)
p = multiprocessing.Pool(4)
xs = p.map(long_running_func, range(100))
however I would like to do it without the overhead of creating new processes.
I know about the GIL. However, in my usecase, the function will be an IO-bound C function for which the python wrapper will release the GIL before the actual function call.
Do I have to write my own threading pool?
回答1:
I just found out that there actually is a thread-based Pool interface in the multiprocessing
module, however it is hidden somewhat and not properly documented.
It can be imported via
from multiprocessing.pool import ThreadPool
It is implemented using a dummy Process class wrapping a python thread. This thread-based Process class can be found in multiprocessing.dummy which is mentioned briefly in the docs. This dummy module supposedly provides the whole multiprocessing interface based on threads.
回答2:
In Python 3 you can use concurrent.futures.ThreadPoolExecutor, i.e.:
executor = ThreadPoolExecutor(max_workers=10)
a = executor.submit(my_function)
See the docs for more info and examples.
回答3:
Yes, and it seems to have (more or less) the same API.
import multiprocessing
def worker(lnk):
....
def start_process():
.....
....
if(PROCESS):
pool = multiprocessing.Pool(processes=POOL_SIZE, initializer=start_process)
else:
pool = multiprocessing.pool.ThreadPool(processes=POOL_SIZE,
initializer=start_process)
pool.map(worker, inputs)
....
回答4:
For something very simple and lightweight (slightly modified from here):
from Queue import Queue
from threading import Thread
class Worker(Thread):
"""Thread executing tasks from a given tasks queue"""
def __init__(self, tasks):
Thread.__init__(self)
self.tasks = tasks
self.daemon = True
self.start()
def run(self):
while True:
func, args, kargs = self.tasks.get()
try:
func(*args, **kargs)
except Exception, e:
print e
finally:
self.tasks.task_done()
class ThreadPool:
"""Pool of threads consuming tasks from a queue"""
def __init__(self, num_threads):
self.tasks = Queue(num_threads)
for _ in range(num_threads):
Worker(self.tasks)
def add_task(self, func, *args, **kargs):
"""Add a task to the queue"""
self.tasks.put((func, args, kargs))
def wait_completion(self):
"""Wait for completion of all the tasks in the queue"""
self.tasks.join()
if __name__ == '__main__':
from random import randrange
from time import sleep
delays = [randrange(1, 10) for i in range(100)]
def wait_delay(d):
print 'sleeping for (%d)sec' % d
sleep(d)
pool = ThreadPool(20)
for i, d in enumerate(delays):
pool.add_task(wait_delay, d)
pool.wait_completion()
To support callbacks on task completion you can just add the callback to the task tuple.
回答5:
Hi to use the thread pool in Python you can use this library :
from multiprocessing.dummy import Pool as ThreadPool
and then for use, this library do like that :
pool = ThreadPool(threads)
results = pool.map(service, tasks)
pool.close()
pool.join()
return results
The threads are the number of threads that you want and tasks are a list of task that most map to the service.
回答6:
Here's the result I finally ended up using. It's a modified version of the classes by dgorissen above.
File: threadpool.py
from queue import Queue, Empty
import threading
from threading import Thread
class Worker(Thread):
_TIMEOUT = 2
""" Thread executing tasks from a given tasks queue. Thread is signalable,
to exit
"""
def __init__(self, tasks, th_num):
Thread.__init__(self)
self.tasks = tasks
self.daemon, self.th_num = True, th_num
self.done = threading.Event()
self.start()
def run(self):
while not self.done.is_set():
try:
func, args, kwargs = self.tasks.get(block=True,
timeout=self._TIMEOUT)
try:
func(*args, **kwargs)
except Exception as e:
print(e)
finally:
self.tasks.task_done()
except Empty as e:
pass
return
def signal_exit(self):
""" Signal to thread to exit """
self.done.set()
class ThreadPool:
"""Pool of threads consuming tasks from a queue"""
def __init__(self, num_threads, tasks=[]):
self.tasks = Queue(num_threads)
self.workers = []
self.done = False
self._init_workers(num_threads)
for task in tasks:
self.tasks.put(task)
def _init_workers(self, num_threads):
for i in range(num_threads):
self.workers.append(Worker(self.tasks, i))
def add_task(self, func, *args, **kwargs):
"""Add a task to the queue"""
self.tasks.put((func, args, kwargs))
def _close_all_threads(self):
""" Signal all threads to exit and lose the references to them """
for workr in self.workers:
workr.signal_exit()
self.workers = []
def wait_completion(self):
"""Wait for completion of all the tasks in the queue"""
self.tasks.join()
def __del__(self):
self._close_all_threads()
def create_task(func, *args, **kwargs):
return (func, args, kwargs)
To use the pool
from random import randrange
from time import sleep
delays = [randrange(1, 10) for i in range(30)]
def wait_delay(d):
print('sleeping for (%d)sec' % d)
sleep(d)
pool = ThreadPool(20)
for i, d in enumerate(delays):
pool.add_task(wait_delay, d)
pool.wait_completion()
回答7:
The overhead of creating the new processes is minimal, especially when it's just 4 of them. I doubt this is a performance hot spot of your application. Keep it simple, optimize where you have to and where profiling results point to.
回答8:
There is no built in thread based pool. However, it can be very quick to implement a producer/consumer queue with the Queue
class.
From: https://docs.python.org/2/library/queue.html
from threading import Thread
from Queue import Queue
def worker():
while True:
item = q.get()
do_work(item)
q.task_done()
q = Queue()
for i in range(num_worker_threads):
t = Thread(target=worker)
t.daemon = True
t.start()
for item in source():
q.put(item)
q.join() # block until all tasks are done
来源:https://stackoverflow.com/questions/3033952/threading-pool-similar-to-the-multiprocessing-pool