Trying to combine two data frames when a datetime object from one dataframe is within a datetime object range in the other.
Keep getting: KeyError: 'cannot use a single bool to index into setitem' on this line of code in the second chunk I posted.
gametaxidf.loc[arrivemask, 'relevant'] = 1
I'm assuming it would happen on the following line with a similar command as well.
This is the part giving me trouble:
with open('/Users/benjaminprice/Desktop/TaxiCombined/Data/combinedtaxifiltered.csv', 'w') as csvfile:
fieldnames1 = ['index','pickup_datetime', 'dropoff_datetime', 'pickup_long', 'pickup_lat','dropoff_long','dropoff_lat','passenger_count','trip_distance','fare_amount','tip_amount','total_amount','stadium_code']
writer = csv.DictWriter(csvfile, fieldnames=fieldnames1)
writer.writeheader()
for index, row in baseballdf.iterrows():
gametimestart = row['Start.Time']
gametimeend = row['End.Time']
arrivemin = gametimestart - datetime.timedelta(minutes=120)
arrivemax = gametimeend - datetime.timedelta(minutes = 30)
departmin = gametimeend - datetime.timedelta(minutes = 60)
departmax = gametimeend + datetime.timedelta(minutes = 90)
gametaxidf = combineddf[combineddf.DATE==row.DATE]
gametaxidf['relevant']=0
for index, row in gametaxidf.iterrows():
arrivemask = (arrivemin < row['dropoff_datetime']) and (row['dropoff_datetime'] < arrivemax)
departmask = (departmin < row['pickup_datetime']) and (row['pickup_datetime'] < departmax)
gametaxidf.loc[arrivemask, 'relevant'] = 1
gametaxidf.loc[departmask, 'relevant'] = 1
with open('/Users/benjaminprice/Desktop/TaxiCombined/Data/combinedtaxifiltered.csv','a') as combinedtaxi:
gametaxidf.to_csv(combinedtaxi,header=None)
print(str(index) + "done")
Gametaxidf.head(5):
index pickup_datetime dropoff_datetime pickup_long pickup_lat \
0 195 2014-04-01 00:08:13 2014-04-01 00:15:32 -73.922218 40.827557
1 344 2014-04-01 00:16:30 2014-04-01 00:20:38 -73.846046 40.754566
2 558 2014-04-01 00:28:59 2014-04-01 00:36:36 -73.921692 40.831394
3 744 2014-04-01 00:42:00 2014-04-01 00:49:46 -73.938080 40.804646
4 776 2014-04-01 00:43:54 2014-04-01 00:53:22 -73.952652 40.810577
dropoff_long dropoff_lat passenger_count trip_distance fare_amount \
0 -73.900620 40.856174 1 2.30 9.0
1 -73.890259 40.753246 1 0.56 4.5
2 -73.942719 40.823257 1 1.53 7.0
3 -73.928490 40.830433 1 2.96 11.0
4 -73.924332 40.827320 1 2.28 10.5
tip_amount total_amount stadium_code DATE relevant
0 0 10.0 1.1 2014-04-01 0
1 0 5.5 2.1 2014-04-01 0
2 0 8.0 1.1 2014-04-01 0
3 0 12.0 1.0 2014-04-01 0
4 0 11.5 1.0 2014-04-01 0
Also getting this warning: A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead
But it's letting me continue through that... any help would be great.
Here
gametaxidf.loc[arrivemask, 'relevant'] = 1
you're trying to set dataframe values by .loc
operator. Pandas docs for selecting rows says:
.loc is primarily label based, but may also be used with a boolean array. .loc will raise KeyError when the items are not found. Allowed inputs are:
- A single label, e.g. 5 or 'a', (note that 5 is interpreted as a label of the index. This use is not an integer position along the index)
- A list or array of labels ['a', 'b', 'c']
- A slice object with labels 'a':'f', (note that contrary to usual python slices, both the start and the stop are included!)
- A boolean array
You're trying to use the last type of input, but this
arrivemask = (arrivemin < row['dropoff_datetime']) and
(row['dropoff_datetime'] < arrivemax)
is scalar boolean, not array.
You need not to iterate through dataframe. Pandas does it for you. Just use:
gametaxidf.loc[
(arrivemin < gametaxidf['dropoff_datetime'])
&
(gametaxidf['dropoff_datetime'] < arrivemax)
, 'relevant'] = 1
来源:https://stackoverflow.com/questions/33817842/keyerror-when-using-boolean-filter-on-pandas-data-frame