Online algorithm for calculating standard deviation

半世苍凉 提交于 2019-11-29 08:06:49

Since average and standard deviation are calculated using sums, you can easily implement appropriate accumulators for these. Then when you want the actual values, finish the rest of the calculation (particularly, the divisions).

The sum of squares is the tricky part since you increment one of the frequencies for each input. One way to deal with this is to maintain a count of each color seen so far (using an appropriate data structure). Then when you see a color in the input, you can subtract out its previous square and add the new square back in (or equivalently add the difference of the two squares to your accumulator).

I'll leave it to the reader to implement the algorithm described here.

You don't need an array to calculate standard deviation.

Simply keep track of the number of points, total sum, and total sum of squares. You can calculate the mean and standard deviation at any time, without having to keep an array.

If I understand your requirements, you'll need a Map where the color is the key and an instance of Statistics is the value.

Here's a class that does it for you.

package statistics;

/**
 * Statistics
 * @author Michael
 * @link http://stackoverflow.com/questions/11978667/online-algorithm-for-calculating-standrd-deviation/11978689#11978689
 * @since 8/15/12 7:34 PM
 */
public class Statistics {

    private int n;
    private double sum;
    private double sumsq;

    public void reset() {
        this.n = 0;
        this.sum = 0.0;
        this.sumsq = 0.0;
    }

    public synchronized void addValue(double x) {
        ++this.n;
        this.sum += x;
        this.sumsq += x*x;
    }

    public synchronized double calculateMean() {
        double mean = 0.0;
        if (this.n > 0) {
            mean = this.sum/this.n;
        }
        return mean;
    }

    public synchronized double calculateVariance() {
       double deviation = calculateStandardDeviation();
        return deviation*deviation;
    }

    public synchronized double calculateStandardDeviation() {
        double deviation = 0.0;
        if (this.n > 1) {
            deviation = Math.sqrt((this.sumsq - this.sum*this.sum/this.n)/(this.n-1));
        }
        return deviation;
    }
}

Here is its unit test:

package statistics;

import org.junit.Assert;
import org.junit.Test;

/**
 * StatisticsTest
 * @author Michael
 * @link http://www.wolframalpha.com/input/?i=variance%281%2C+2%2C+3%2C+4%2C+5%2C+6%29&a=*C.variance-_*Variance-
 * @since 8/15/12 7:42 PM
 */
public class StatisticsTest {

    private static final double TOLERANCE = 1.0E-9;

    @Test
    public void testCalculateMean() {
        double [] values = new double[] {
            1.0, 2.0, 3.0, 4.0, 5.0, 6.0
        };
        Statistics stats = new Statistics();
        for (double value : values) {
            stats.addValue(value);
        }
        double expected = 3.5;
        Assert.assertEquals(expected, stats.calculateMean(), TOLERANCE);
    }

    @Test
    public void testCalculateVariance() {
        double [] values = new double[] {
                1.0, 2.0, 3.0, 4.0, 5.0, 6.0
        };
        Statistics stats = new Statistics();
        for (double value : values) {
            stats.addValue(value);
        }
        double expected = 3.5;
        Assert.assertEquals(expected, stats.calculateVariance(), TOLERANCE);
    }


    @Test
    public void testCalculateStandardDeviation() {
        double [] values = new double[] {
                1.0, 2.0, 3.0, 4.0, 5.0, 6.0
        };
        Statistics stats = new Statistics();
        for (double value : values) {
            stats.addValue(value);
        }
        double expected = Math.sqrt(3.5);
        Assert.assertEquals(expected, stats.calculateStandardDeviation(), TOLERANCE);
    }

}
易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!