Source and importance of nonce / IV for protocol using AES-GCM

你离开我真会死。 提交于 2019-11-29 03:45:57
rook

GCM is a block cipher counter mode with authentication. A Counter mode effectively turns a block cipher into a stream cipher, and therefore many of the rules for stream ciphers still apply. Its important to note that the same Key+IV will always produce the same PRNG stream, and reusing this PRNG stream can lead to an attacker obtaining plaintext with a simple XOR. In a protocol the same Key+IV can be used for the life of the session, so long as the mode's counter doesn't wrap (int overflow). For example, a protocol could have two parties and they have a pre-shared secret key, then they could negotiate a new cryptographic Nonce that is used as the IV for each session (Remember nonce means use ONLY ONCE).

If you want to use AES as a block cipher you should look into CMAC Mode or perhaps the OMAC1 variant. With CMAC mode all of the rules for still CBC apply. In this case you would have to make sure that each packet used a unique IV that is also random. However its important to note that reusing an IV doesn't have nearly as dire consequences as reusing PRNG stream.

I'd suggest against making your own security protocol. There are several things you need to consider that even a qualified cryptographer can get it wrong. I'd refer you to the TLS protocol (RFC5246), and the datagram TLS protocol (RFC 4347). Pick a library and use them.

Concerning your question with IV in GCM mode. I'll tell you how DTLS and TLS do it. They use an explicit nonce, i.e. the message sequence number (64-bits) that is included in every packet, with a secret part that is not transmitted (the upper 32 bits) and is derived from the initial key exchange (check RFC 5288 for more information).

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!