How to do perspective correction in Matlab from known Intrinsic and Extrinsic parameters?

自闭症网瘾萝莉.ら 提交于 2019-11-28 17:38:37

To all who are still interested in this after so many months, i've managed to get the correct homography matrix using Kovesi's code (http://www.csse.uwa.edu.au/~pk/research/matlabfns), and especially the homography2d.m function. You will need however the pixel values of the four corners of the rig. If the camera is steady fixed, then you will need to do this once. See example code below:

%get corner pixel coords from base image
p1=[33;150;1];
p2=[316;136;1];
p3=[274;22;1];
p4=[63;34;1];
por=[p1 p2 p3 p4];
por=[0 1 0;1 0 0;0 0 1]*por;    %swap x-y <--------------------

%calculate target image coordinates in world frame
% rig is 9x7 (X,Y) with 27.5mm box edges
XXw=[[0;0;0] [0;27.5*9;0] [27.5*7;27.5*9;0] [27.5*7;0;0]];
Rtarget=[0 1 0;1 0 0;0 0 -1]; %Rotation matrix of target camera (vertical pose)
XXc=Rtarget*XXw+Tc_ext*ones(1,4); %go from world frame to camera frame
xn=XXc./[XXc(3,:);XXc(3,:);XXc(3,:)]; %calculate normalized coords
xpp=KK*xn;  %calculate target pixel coords

% get homography matrix from original to target image
HH=homography2d(por,xpp);
%do perspective transformation to validate homography
pnew=HH*por./[HH(3,:)*por;HH(3,:)*por;HH(3,:)*por]; 

That should do the trick. Note that Matlab defines the x axis in an image ans the rows index and y as the columns. Thus one must swap x-y in the equations (as you'll probably see in the code above). Furthermore, i had managed to compute the homography matrix from the parameters solely, but the result was slightly off (maybe roundoff errors in the calibration toolbox). The best way to do this is the above.

If you want to use just the camera parameters (that is, don't use Kovesi's code), then the Homography matrix is H=KK*Rmat*inv_KK. In this case the code is,

% corner coords in pixels
p1=[33;150;1];
p2=[316;136;1];
p3=[274;22;1];
p4=[63;34;1];
pmat=[p1 p2 p3 p4];
pmat=[0 1 0;1 0 0;0 0 1]*pmat; %swap x-y

R=[0 1 0;1 0 0;0 0 1];  %rotation matrix of final camera pose
Rmat=Rc_ext'*R;  %rotation from original pose to final pose
H=KK*Rmat*inv_KK; %homography matrix
pnew=H*pmat./[H(3,:)*pmat;H(3,:)*pmat;H(3,:)*pmat]; %do perspective transformation

H2=[0 1 0;-1 0 0;0 0 1]*H;  %swap x-y in the homography matrix to apply in image

Approach 1: In the Camera Calibration Toolbox you should notice that there is an H matrix for each image of your checkerboard in your workspace. I am not familiar with the computer vision toolbox yet but perhaps this is the matrix you need for your function. It seems that H is computed like so:

KK = [fc(1) fc(1)*alpha_c cc(1);0 fc(2) cc(2); 0 0 1];
H = KK * [R(:,1) R(:,2) Tc]; % where R is your extrinsic rotation matrix and Tc the translation matrix
H = H / H(3,3);

Approach 2: If the computer vision toolbox function doesn't work out for you then to find the prospective projection of an image I have used the interp2 function like so:

[X, Y] = meshgrid(0:size(I,2)-1, 0:size(I,1)-1);
im_coord = [X(:), Y(:), ones(prod(size(I_1)))]';
% Insert projection here for X and Y to XI and YI
ZI = interp2(X,Y,Z,XI,YI);

I have used prospective projections on a project a while ago and I believe that you need to use homogeneous coordinates. I think I found this wikipedia article quite helpful.

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!