[Complete re-edit by Spektre] based on comments
I have two start points and velocity vectors in 3D (WGS84) how would I check if they are colliding in 3D within some specified time?
Sample input:
// WGS84 objects positions
const double deg=M_PI/180.0;
double pos0[3]={17.76 *deg,48.780 *deg,6054.0}; // lon[rad],lat[rad],alt[m]
double pos1[3]={17.956532816382374*deg,48.768667387202690*deg,3840.0}; // lon[rad],lat[rad],alt[m]
// WGS84 speeds in [km/h] not in [deg/sec]!!!
double vel0[3]={- 29.346910862289782, 44.526061886823861,0.0}; // [km/h] lon,lat,alt
double vel1[3]={- 44.7 ,-188.0 ,0.0}; // [km/h] lon,lat,alt
And here correctly transformed positions into Cartesian (using online convertor linked bellow):
double pos0[3]={ 4013988.58505233,1285660.27718040,4779026.13957769 }; // [m]
double pos1[3]={ 4009069.35282446,1299263.86628867,4776529.76526759 }; // [m]
And these using my conversion from the linked QA below (difference may be caused by different ellipsoid and or floating point errors):
double pos0[3] = { 3998801.90188399, 1280796.05923908, 4793000.78262020 }; // [m]
double pos1[3] = { 3993901.28864493, 1294348.18237911, 4790508.28581325 }; // [m]
double vel0[3] = { 11.6185787807449, 41.1080659685389, 0 }; // [km/h]
double vel1[3] = { 17.8265828114202,-173.3281435179590, 0 }; // [km/h]
My question is: How to detect if the objects will collide and when?
What I really need is if collision occurs within some specified time like _min_t
.
Beware the speeds are in [km/h]
in direction of local North,East,High/Up
vectors! For more info about converting such speeds into Cartesian coordinates see related:
To validate/check WGS84 position transformations you can use the following online calculator:
I would like to avoid using mesh, primitives or similar stuff if possible.
This is Andre's attempt to solve this (based on my answer but missing the speed transformation) left from the original post:
bool collisionDetection()
{
const double _min_t = 10.0; // min_time
const double _max_d = 5000; // max_distance
const double _max_t = 0.001; // max_time
double dt;
double x, y, z, d0, d1;
VectorXYZd posObj1 = WGS84::ToCartesian(m_sPos1);
VectorXYZd posObj2 = WGS84::ToCartesian(m_sPos2);
const QList<QVariant> velocity;
if (velocity.size() == 3)
{
dt = _max_t;
x = posObj1 .x - posObj2 .x;
y = posObj1 .y - posObj2 .y;
z = posObj1 .z - posObj2 .z;
d0 = sqrt((x*x) + (y*y) + (z*z));
x = posObj1 .x - posObj2 .x + (m_sVelAV.x - velocity.at(0).toDouble())*dt;
y = posObj1 .y - posObj2 .y + (m_sVelAV.y - velocity.at(1).toDouble())*dt;
z = posObj1 .z - posObj2 .z + (m_sVelAV.z - velocity.at(2).toDouble())*dt;
d1 = sqrt((x*x) + (y*y) + (z*z));
double t = (_max_d - d0)*dt / (d1 - d0);
if (d0 <= _max_d)
{
return true;
}
if (d0 <= d1)
{
return false;
}
if (t < _min_t)
{
return true;
}
}
return false;
}
And this is supposed to be valid Cartesian transformed positions and speeds but transformed wrongly due to wrong order of x, y, z
parameters. The data above is in correct lon, lat, alt
and x, y, z
order this is obviously not:
posObject2 = {x=1296200.8297778680 y=4769355.5802477235 z=4022514.8921807557 }
posObject1 = {x=1301865.2949957885 y=4779902.8263504291 z=4015541.3863254949 }
velocity object 2: x = -178, y = -50, z = 8
velocity object 1: x = 0, y = -88, z = 0;
Not to mention velocities are still not on Cartesian space ...
EDIT: NEW TEST CASE
m_sPosAV = {North=48.970020901863471 East=18.038928517158574 Altitude=550.00000000000000 }
m_position = {North=48.996515594886858 East=17.989637729707006 Altitude=550.00000000000000 }
d0 = 4654.6937995573062
d1 = 4648.3896597230259
t = 65.904213878080199
dt = 0.1
velocityPoi = {x=104.92401431817457 y=167.91352303897233 z=0.00000000000000000 }
m_sVelAV = {x=0.00000000000000000 y=0.00000000000000000 z=0.00000000000000000 }
ANOTHER TEST CASE:
m_sPosAV = {North=49.008020930461598 East=17.920928503349856 Altitude=550.00000000000000 }
m_position = {North=49.017421151053824 East=17.989399013104570 Altitude=550.00000000000000 }
d0 = 144495.56021027692
d1 = 144475.91709961568
velocityPoi = {x=104.92401431817457 y=167.91352303897233 z=0.00000000000000000 }
m_sVelAV = {x=0.89000000000000001 y=0.00000000000000000 z=0.
00000000000000000 }
t = 733.05884538126884
TEST CASE 3 COLLISION TIME IS 0
m_sPosAV = {North=48.745020278145105 East=17.951529239281793 Altitude=4000.0000000000000 }
m_position = {North=48.734919749542570 East=17.943535418223373 Altitude=4000.0000000000000 }
v1 = {61.452929549676597, -58.567847120366054, 8.8118360639107198}
v0 = {0.00000000000000000, 0.00000000000000000, 0.00000000000000000}
pos0 = {0.85076109780503417, 0.31331329099350030, 4000.0000000000000}
pos1 = {0.85058481032472799, 0.31317377249621559, 3993.0000000000000}
d1 = 2262.4742373961790
LAST TEST CASE:
p0 = 0x001dc7c4 {3933272.5980855357, 4681348.9804422557, 1864104.1897091190}
p1 = 0x001dc7a4 {3927012.3039519843, 4673002.8791717924, 1856993.0651808924}
dt = 100;
n = 6;
v1 = 0x001dc764 {18.446446996578750, 214.19570794229870, -9.9777430316824578}
v0 = 0x001dc784 {0.00000000000000000, 0.00000000000000000, 0.00000000000000000}
const double _max_d = 2500;
double _max_T = 120;
Final Test Case:
m_sPosAV = {North=49.958099932390311 East=16.958899924978102 Altitude=9000.0000000000000 }
m_position = {North=49.956106045262935 East=16.928683918401916 Altitude=9000.0000000000000 }
p0 = 0x0038c434 {3931578.2438977188, 4678519.9203961492, 1851108.3449359399}
p1 = 0x0038c414 {3933132.4705292359, 4679955.4705412844, 1850478.2954359739}
vel0 = 0x0038c3b4 {0.00000000000000000, 0.00000000000000000, 0.00000000000000000}
vel1 = 0x0038c354 {-55.900000000000006, 185.69999999999999, -8.0000000000000000}
dt = 1; // [sec] initial time step (accuracy = dt/10^(n-1)
n = 5; // accuracy loops
FINAL CODE:
const double _max_d = 2500; // max_distance m
m_Time = 3600.0;
int i, e, n;
double t, dt;
double x, y, z, d0, d1 = 0;
double p0[3], p1[3], v0[3], v1[3];
double vel0[3], pos0[3], pos1[3], vel1[3];
vel0[0] = m_sVelAV.x;
vel0[1] = m_sVelAV.y;
vel0[2] = m_sVelAV.z;
vel1[0] = velocityPoi.x;
vel1[1] = velocityPoi.y;
vel1[2] = velocityPoi.z;
pos0[0] = (m_sPosAV.GetLatitude()*pi) / 180;
pos0[1] = (m_sPosAV.GetLongitude()*pi) / 180;
pos0[2] = m_sPosAV.GetAltitude();
pos1[0] = (poi.Position().GetLatitude()*pi) / 180;
pos1[1] = (poi.Position().GetLongitude()*pi) / 180;
pos1[2] = poi.Position().GetAltitude();
WGS84toXYZ_posvel(p0, v0, pos0, vel0);
WGS84toXYZ_posvel(p1, v1, pos1, vel1);
dt = 1; // [sec] initial time step (accuracy = dt/10^(n-1)
n = 5; // accuracy loops
for (t = 0.0, i = 0; i<n; i++)
for (e = 1; t <= m_Time; t += dt)
{
d0 = d1;
// d1 = relative distance in time t
x = p0[0] - p1[0] + (v0[0] - v1[0])*t;
y = p0[1] - p1[1] + (v0[1] - v1[1])*t;
z = p0[2] - p1[2] + (v0[2] - v1[2])*t;
d1 = sqrt((x*x) + (y*y) + (z*z));
if (e) { e = 0; continue; }
// if bigger then last step stop (and search with 10x smaller time step)
if (d0<d1) { d1 = d0; t -= dt + dt; dt *= 0.1; if (t<0.0) t = 0.0; break; }
}
// handle big distance as no collision
if (d1 > _max_d) return false;
if (t >= m_Time) return false;
qDebug() << "Collision at time t= " << t;
[Edit5] Complete reedit in case you need old sources see the revision history
As Nico Schertler pointed out checking for line to line intersection is insanity as the probability of intersecting 2 trajectories at same position and time is almost none (even when including round-off precision overlaps). Instead you should find place on each trajectory that is close enough (to collide) and both objects are there at relatively same time. Another problem is that your trajectories are not linear at all. Yes they can appear linear for shor times in booth WGS84 and Cartesian but with increasing time the trajectory bends around Earth. Also your input values units for speed are making this a bit harder so let me recapitulate normalized values I will be dealing with from now:
Input
consists of two objects. For each is known its actual position (in WGS84
[rad]
) and actual speeds[m/s]
but not in Cartesian space but WGS84 local axises instead. For example something like this:const double kmh=1.0/3.6; const double deg=M_PI/180.0; const double rad=180.0/M_PI; // lon lat alt double pos0[3]={ 23.000000*deg, 48.000000*deg,2500.000000 }; double pos1[3]={ 23.000000*deg, 35.000000*deg,2500.000000 }; double vel0[3]={ 100.000000*kmh,-20.000000*kmh, 0.000000*kmh }; double vel1[3]={ 100.000000*kmh, 20.000000*kmh, 0.000000*kmh };
Beware mine coordinates are in
Long,Lat,Alt
order/convention !!!output
You need to compute the time in which the two objects "collide" Additional constrains to solution can be added latter on. As mentioned before we are not searching for intersection but "closest" approach instead that suffice collision conditions (like distance is smaller then some threshold).
After some taught and testing I decided to use iterative approach in WGS84 space. That brings up some problems like how to convert speed in [m/s]
in WGS84 space to [rad/s]
in WGS84 space. This ratio is changing with object altitude and latitude. In reality we need to compute angle change in long
and lat
axises that are "precisely" equal to 1m
traveled distance and then multiply the velocities by it. This can be approximated by arc-length equation:
l = dang.R
Where R
is actual radius of angular movement, ang
is the angle change and l
is traveled distance so when l=1.0
then:
dang = 1.0/R
If we have Cartesian position x,y,z
(z
is Earth rotation axis) then:
Rlon = sqrt (x*x + y*y)
Rlat = sqrt (x*x + y*y + z*z)
Now we can iterate positions with time which can be used to approximate closest approach time. We need to limit the max time step however so we do not miss to much of the Earth curvature. This limit is dependent on used speeds and target precision. So here the algorithm to find the approach:
init
set initial time step to the upper limit like
dt=1000.0
and compute actual positions of booth objects in Cartesian space. From that compute their distanced1
.iteration
set
d0=d1
then compute actual speeds in WGS84 for actual positions and addspeed*dt
to each objects actualWGS84
position. Now just compute actual positions in Cartesian space and compute their distanced1
if
d0>d1
then it menas we are closing to the closest approach so goto #2 again.
In cased0==d1
the trajectories are parallel so return approach timet=0.0
In cased0<d1
we already crossed the closest approach so setdt = -0.1*dt
and ifdt>=desired_accuracy
goto #2 otherwise stop.recover best
t
After the iteration in #2 we should recover the best time back so return
t+10.0*dt;
Now we have closest approach time t
. Beware it can be negative (if the objects are going away from each other). Now you can add your constrains like
if (d0<_max_d)
if ((t>=0.0)&&(t<=_max_T))
return collision ...
Here C++ source for this:
//---------------------------------------------------------------------------
#include <math.h>
//---------------------------------------------------------------------------
const double kmh=1.0/3.6;
const double deg=M_PI/180.0;
const double rad=180.0/M_PI;
const double _earth_a=6378137.00000; // [m] WGS84 equator radius
const double _earth_b=6356752.31414; // [m] WGS84 epolar radius
const double _earth_e=8.1819190842622e-2; // WGS84 eccentricity
const double _earth_ee=_earth_e*_earth_e;
//--------------------------------------------------------------------------
const double _max_d=2500.0; // [m] collision gap
const double _max_T=3600000.0; // [s] max collision time
const double _max_dt=1000.0; // [s] max iteration time step (for preserving accuracy)
//--------------------------------------------------------------------------
// lon lat alt
double pos0[3]={ 23.000000*deg, 48.000000*deg,2500.000000 }; // [rad,rad,m]
double pos1[3]={ 23.000000*deg, 35.000000*deg,2500.000000 }; // [rad,rad,m]
double vel0[3]={ 100.000000*kmh,-20.000000*kmh, 0.000000*kmh }; // [m/s,m/s,m/s]
double vel1[3]={ 100.000000*kmh,+20.000000*kmh, 0.000000*kmh }; // [m/s,m/s,m/s]
//---------------------------------------------------------------------------
double divide(double x,double y)
{
if ((y>=-1e-30)&&(y<=+1e-30)) return 0.0;
return x/y;
}
void vector_copy(double *c,double *a) { for(int i=0;i<3;i++) c[i]=a[i]; }
double vector_len(double *a) { return sqrt((a[0]*a[0])+(a[1]*a[1])+(a[2]*a[2])); }
void vector_len(double *c,double *a,double l)
{
l=divide(l,sqrt((a[0]*a[0])+(a[1]*a[1])+(a[2]*a[2])));
c[0]=a[0]*l;
c[1]=a[1]*l;
c[2]=a[2]*l;
}
void vector_sub(double *c,double *a,double *b) { for(int i=0;i<3;i++) c[i]=a[i]-b[i]; }
//---------------------------------------------------------------------------
void WGS84toXYZ(double *xyz,double *abh)
{
double a,b,h,l,c,s;
a=abh[0];
b=abh[1];
h=abh[2];
c=cos(b);
s=sin(b);
// WGS84 from eccentricity
l=_earth_a/sqrt(1.0-(_earth_ee*s*s));
xyz[0]=(l+h)*c*cos(a);
xyz[1]=(l+h)*c*sin(a);
xyz[2]=(((1.0-_earth_ee)*l)+h)*s;
}
//---------------------------------------------------------------------------
void WGS84_m2rad(double &da,double &db,double *abh)
{
// WGS84 from eccentricity
double p[3],rr;
WGS84toXYZ(p,abh);
rr=(p[0]*p[0])+(p[1]*p[1]);
da=divide(1.0,sqrt(rr));
rr+=p[2]*p[2];
db=divide(1.0,sqrt(rr));
}
//---------------------------------------------------------------------------
double collision(double *pos0,double *vel0,double *pos1,double *vel1)
{
int e,i,n;
double p0[3],p1[3],q0[3],q1[3],da,db,dt,t,d0,d1,x,y,z;
vector_copy(p0,pos0);
vector_copy(p1,pos1);
// find closest d1[m] approach in time t[sec]
dt=_max_dt; // [sec] initial time step (accuracy = dt/10^(n-1)
n=6; // acuracy loops
for (t=0.0,i=0;i<n;i++)
for (e=0;;e=1)
{
d0=d1;
// compute xyz distance
WGS84toXYZ(q0,p0);
WGS84toXYZ(q1,p1);
vector_sub(q0,q0,q1);
d1=vector_len(q0);
// nearest approach crossed?
if (e)
{
if (d0<d1){ dt*=-0.1; break; } // crossing trajectories
if (fabs(d0-d1)<=1e-10) { i=n; t=0.0; break; } // parallel trajectories
}
// apply time step
t+=dt;
WGS84_m2rad(da,db,p0);
p0[0]+=vel0[0]*dt*da;
p0[1]+=vel0[1]*dt*db;
p0[2]+=vel0[2]*dt;
WGS84_m2rad(da,db,p1);
p1[0]+=vel1[0]*dt*da;
p1[1]+=vel1[1]*dt*db;
p1[2]+=vel1[2]*dt;
}
t+=10.0*dt; // recover original t
// if ((d0<_max_d)&&(t>=0.0)&&(t<=_max_T)) return collision; else return no_collision;
return t;
}
//---------------------------------------------------------------------------
Here an overview of example:
Red is object0 and Green is object1. The White squares represents position at computed collision at time t_coll [s]
with distance d_coll [m]
. Yellow squares are positions at user defined time t_anim [s]
with distance d_anim [m]
which is controlled by User for debugging purposes. As you can see this approach works also for times like 36 hours ...
Hope I did not forget to copy something (if yes comment me and I will add it)
You do not show any code, so I will just give the main ideas and leave the coding to you. Come back if you try some code and are stuck, but show your effort and your code so far.
There are multiple ways to solve your problem. One way is to set parametric equations for each object, giving your two functions in time t
. Set the results of those functions equal and solve for time. For 3D coordinates that gives you three questions, one for each coordinate, and it is very unlikely that the values of t
will be the same for all three equations. If they are the same, that is the time of your collision.
Another way, which allows for some floating-point rounding errors, is to change the frame of reference to that of one of the objects. You subtract the two velocity vectors, say v2-v1
, and you now have the velocity of the second object relative to the first object. Now find the distance from the now-stationary first object to the line of the moving second object. If you don't know how to do that, look up 'distance from point to line' in your favorite search engine. You then see if that distance is small enough for you to consider it as a collision--you are unlikely to get a perfect collision, a zero distance, given floating-point rounding errors. If it is small enough, you then see if that collision is reached in the future or was reached in the past. You may want to find the projection of the point on the line as an intermediate value for that last calculation.
Is that clear?
来源:https://stackoverflow.com/questions/41101107/collision-detection-between-2-linearly-moving-objects-in-wgs84