问题
At some point in my code I have to make operations on all elements in an unordered_map. In order to accelerate this process I want to use openMP, but the naive approach does not work:
std::unordered_map<size_t, double> hastTable;
#pragma omp for
for(auto it = hastTable.begin();
it != hastTable.end();
it ++){
//do something
}
The reason for this is, that the iterator of an unordered_map is no random access iterator. As an alternative I have tried the __gnu_parallel directives working on for_each. But the following code
#include <parallel/algorithm>
#include <omp.h>
__gnu_parallel::for_each (hashTable.begin(), hashTable.end(),[](std::pair<const size_t, double> & item)
{
//do something with item.secon
});
compiled with (gcc 4.8.2)
g++ -fopenmp -march=native -std=c++11
does not run parallel. Switching the unordered_map with a vector and using the same __gnu_parallel directive runs in parallel.
Why does it not run in parallel in case of the unordered map? Are there workarounds?
In the following I give you some simple code, which reproduces my problem.
#include <unordered_map>
#include <parallel/algorithm>
#include <omp.h>
int main(){
//unordered_map
std::unordered_map<size_t, double> hashTable;
double val = 1.;
for(size_t i = 0; i<100000000; i++){
hashTable.emplace(i, val);
val += 1.;
}
__gnu_parallel::for_each (hashTable.begin(), hashTable.end(),[](std::pair<const size_t, double> & item)
{
item.second *= 2.;
});
//vector
std::vector<double> simpleVector;
val = 1.;
for(size_t i = 0; i<100000000; i++){
simpleVector.push_back(val);
val += 1.;
}
__gnu_parallel::for_each (simpleVector.begin(), simpleVector.end(),[](double & item)
{
item *= 2.;
});
}
I am looking forward to your answers.
回答1:
You could split a loop over ranges of bucket indices, then create an intra-bucket iterator to handle elements. unordered_map
has .bucket_count()
and the bucket-specific iterator-yielding begin(bucket_number)
, end(bucket_number)
that allow this. Assuming you haven't modified the default max_load_factor()
from 1.0 and have a reasonable hash function, you'll average 1 element per bucket and shouldn't be wasting too much time on empty buckets.
回答2:
The canonical approach with containers that do not support random iterators is to use explicit OpenMP tasks:
std::unordered_map<size_t, double> hastTable;
#pragma omp parallel
{
#pragma omp single
{
for(auto it = hastTable.begin(); it != hastTable.end(); it++) {
#pragma omp task
{
//do something
}
}
}
}
This creates a separate task for each iteration which brings some overhead and therefore is only meaningful when //do something
actually means //do quite a bit of work
.
回答3:
You can do this by iterating over the buckets of the unordered_map
, like so:
#include <cmath>
#include <iostream>
#include <unordered_map>
int main(){
const int N = 10000000;
std::unordered_map<int, double> mymap(1.5*N);
//Load up a hash table
for(int i=0;i<N;i++)
mymap[i] = i+1;
#pragma omp parallel for default(none) shared(mymap)
for(size_t b=0;b<mymap.bucket_count();b++)
for(auto bi=mymap.begin(b);bi!=mymap.end(b);bi++){
for(int i=0;i<20;i++)
bi->second += std::sqrt(std::log(bi->second) + 1);
}
std::cout<<mymap.begin()->first<<" "<<mymap.begin()->second<<std::endl;
return 0;
}
来源:https://stackoverflow.com/questions/26034642/openmp-gnu-parallel-for-an-unordered-map