How to optimize quicksort

江枫思渺然 提交于 2019-11-28 05:02:00

In Quick-sort , you choose a random pivot that delimits the array to two half's, most of the chances that one may be smaller,

e.g. Array size 100, pivot delimits the array to 40 / 60, the 40 is the the smaller size.

Lets assume that you decide on your threshold size to use the insertion sort to be 10, you need to continue recursively split the array by pivot , whenever one of the half's become smaller or equal to 10, you may use the insertion sort that behaves like O(n) on small size arrays.

Take into account that insertion sort will behave badly if your array is sorted reversely (worst case).

As regards to the recursion stuff, you only need to modify the stop case of the quick-sort recursion -> array size <= 10 stop recursion and sort the all the array (which is much smaller in this recursion step) using insertion sort.

By tail recursion , they mean do everything you need with the first half, and then invoke insertion sort for the smaller half as a last method , it is used to save space.

  Quick-sort()
      choose a pivot
      move the smaller elements from left
      move the bigger elements from right
      quick-sort on the bigger half of the array

      if half is less then X
         only then do an insertion sort on the other half <- this is a tail recursion insertion sort 
      else
         quick sort on this half also

As far as i see , the second optimization suggest not to use insertion sort for every recursion step, but remember the indexes for which the constraint is made, then to invoke insertion sort in one batch concatenating the items from all the slices, this will insure improve the cache use , but is is slightly more difficult to implement,

There are multiple ways one can make standard quicksort more efficent. To implement the first tip from your post you should write something like:

void quicksort(int * tab, int l, int r)
{
   int q;
   while(l < r)
   {
      q = partition(tab, l, r);
      if(q - l < r - q) //recurse into the smaller half
      {
         quicksort(tab, l, q - 1);
         l = q + 1;
      } else
      {
         quicksort(tab, q + 1, r);
         r = q - 1;
      }
   }
}

Hope that's clear enough. Next step would be to implement your own stack (or use some built-in from whatever language you are using) instead of using recursive calls. Example (pseudo)code:

void quicksort2(int * tab, int l, int r)
{
    int le, ri, q;
    init stack;
    push(l, r, stack);
    while(!empty(stack))
    {
        //take the top pair of values from the stack and set them to le and ri
        pop(le, ri, stack);
        if(le >= ri)
            continue;
        q = partition(tab, le, ri);
        if(q - le < ri - q) //smaller half goes first
        {
            push(le, q - 1, stack);
            push(q + 1, ri, stack);
        } else
        {
            push(q + 1, ri, stack);
            push(le, q - 1, stack);
        }
    }
    delete stack;
}

Then you can proceed to implement the other tip from your post. To do this you should set some arbitrary constant, lets call it CUT_OFF, to around 20. This will tell your algorithm when it should switch to insertion sort. It should be rather easy (a matter of adding one if-statement) to alter the previous example so that it switches to insertion sort after it's reached a CUT_OFF point so I will leave you to that.

As for partition method I would recommend using the Lomuto partition instead of Hoare.

However, if your data is already pre-sorted, then you could consider using a different algorithm altogether. From my experience, natural series merge sort implemented on a linked list is a very good choice, if your data is pre-sorted.

I wrote some time ago a quicksort-based algorithm that you can find there (actually it is a selection algorithm, but can be used a sort algorithm too):

The lessons I learned from this experience are the following:

  1. Carefully tune the partition loop of your algorithm. This is often underestimated, but you do get a significant performance boost if you take care of writing loops that the compiler/CPU will be able to software pipeline. This alone has lead to a win of about 50% in CPU cyles.
  2. Hand-coding small sorts gives you a major peformance win. When the number of elements to be sorted in a partition is under 8 elements, just don't bother trying to recurse, but instead implement a hard-coded sort using just ifs and swaps (have a look at the fast_small_sort function in this code). This can lead to a win of about 50% in CPU cycles giving the quicksort the same practical performance as a well written "merge sort".
  3. Spend time to pick a better pivot value when a "poor" pivot selection is detected. My implementation starts using a "median of median" algorithm for pivot selection whenever a pivot selection leads to one side being under 16% of the remaining elements to be sorted. This is a mitigation strategy for worst-case performance of quick-sort, and help ensure that in practice the upper bound is also O(n*log(n)) instead of O(n^2).
  4. Optimize for arrays with lots of equal values (when needed). If the arrays to be sorted have lots of equal values it is worth optimizing for as it will lead to poor pivot selection. In my code I do it by counting all the array entries that are equal to the pivot value. This enables me treat the pivot and all the equal values in the array in a faster way, and doesn't degrade performance when it is not applicable. This is another mitigation strategy for worst-case performance, it helps reduce the worst-case stack usage by reducing the max recursion level in a drastic way.

I hope this helps, Laurent.

You can take a look at TimSort, which for non completely random data performs better than quicksort (they have the same asymptotic complexity but TimSort has lower constants)

I've recently have found this optimization. It works faster than std::sort. It uses selection sort on small arrays and median-of-3 as partitioning element.

This is my C++ implementation:

const int CUTOFF = 8;

template<typename T>
bool less (T &v, T &w)
{
    return (v < w);
}

template<typename T>
bool eq (T &v, T &w)
{
    return w == v;
}

template <typename T>
void swap (T *a, T *b)
{
    T t = *a;
    *a = *b;
    *b = t;
}

template<typename T>
void insertionSort (vector<T>& input, int lo, int hi) 
{
    for (int i = lo; i <= hi; ++i)
    {
        for (int j = i; j > lo && less(input[j], input[j-1]); --j)
        {
            swap(&input[j], &input[j-1]);
        }
    }
}


template<typename T>
int median3 (vector<T>& input, int indI, int indJ, int indK)
{
    return (less(input[indI], input[indJ]) ?
            (less(input[indJ], input[indK]) ? indJ : less(input[indI], input[indK]) ? indK : indI) :
            (less(input[indK], input[indJ]) ? indJ : less(input[indK], input[indI]) ? indK : indI));
}


template <typename T>
void sort(vector<T>& input, int lo, int hi) 
{ 
    int lenN = hi - lo + 1;

    // cutoff to insertion sort
    if (lenN <= CUTOFF) 
    {
        insertionSort(input, lo, hi);
        return;
    }

    // use median-of-3 as partitioning element
    else if (lenN <= 40) 
    {
        int median = median3(input, lo, lo + lenN / 2, hi);
        swap(&input[median], &input[lo]);
    }

    // use Tukey ninther as partitioning element
    else  
    {
        int eps = lenN / 8;
        int mid = lo + lenN / 2;
        int mFirst = median3(input, lo, lo + eps, lo + eps + eps);
        int mMid = median3(input, mid - eps, mid, mid + eps);
        int mLast = median3(input, hi - eps - eps, hi - eps, hi); 
        int ninther = median3(input, mFirst, mMid, mLast);
        swap(&input[ninther], &input[lo]);
    }

    // Bentley-McIlroy 3-way partitioning
    int iterI = lo, iterJ = hi + 1;
    int iterP = lo, iterQ = hi + 1;

    for (;; ) 
    {
        T v = input[lo];
        while (less(input[++iterI], v))
        {
            if (iterI == hi) 
                break;
        }
        while (less(v, input[--iterJ]))
        {
            if (iterJ == lo)    
                break;
        }
        if (iterI >= iterJ) 
            break;
        swap(&input[iterI], &input[iterJ]);
        if (eq(input[iterI], v)) 
            swap(&input[++iterP], &input[iterI]);
        if (eq(input[iterJ], v)) 
            swap(&input[--iterQ], &input[iterJ]);
    }
    swap(&input[lo], &input[iterJ]);

    iterI = iterJ + 1;
    iterJ = iterJ - 1;
    for (int k = lo + 1; k <= iterP; ++k) 
    {
        swap(&input[k], &input[iterJ--]);
    }
    for (int k = hi  ; k >= iterQ; --k)
    {
        swap(&input[k], &input[iterI++]);
    }

    sort(input, lo, iterJ);
    sort(input, iterI, hi);
}

Tail recursion is to change a recursive call into a loop. For QuickSort, it would be somthing like:

QuickSort(SortVar)                                                                     
   Granularity = 10                                                            
   SortMax = Max(SortVar)
   /* Put an element after the last with a higher key than all other elements 
      to avoid that the inner loop goes on forever */
   SetMaxKey(SortVar, SortMax+1)

   /* Push the whole interval to sort on stack */               
   Push 1 SortMax                                                              
   while StackSize() > 0                                                       
      /* Pop an interval to sort from stack */
      Pop SortFrom SortTo                                                     

      /* Tail recursion loop */                           
      while SortTo - SortFrom >= Granularity                                

         /* Find the pivot element using median of 3 */                            
         Pivot = Median(SortVar, SortFrom, (SortFrom + SortTo) / 2, SortTo)             
         /* Put the pivot element in front */                                     
         if Pivot > SortFrom then Swap(SortVar, SortFrom, Pivot)

         /* Place elements <=Key to the left and elements >Key to the right */           
         Key = GetKey(SortVar, SortFrom)                                                
         i = SortFrom + 1                                                      
         j = SortTo                                                            
         while i < j                                                        
            while GetKey(SortVar, i) <= Key; i = i + 1; end                          
            while GetKey(SortVar, j) > Key; j = j - 1; end                           
            if i < j then Swap(SortVar, i, j)                                       
         end                                                                   

         /* Put the pivot element back */                            
         if GetKey(SortVar, j) < Key then Swap(SortVar, SortFrom, j)                                         

         if j - SortFrom < SortTo - j then                                  
            /* The left part is smallest - put it on stack */                     
            if j - SortFrom > Granularity then Push SortFrom j-1               
            /* and do tail recursion on the right part */                           
            SortFrom = j + 1                                                   
         end                                                                   
         else
            /* The right part is smallest - put it on stack */                       
            if SortTo - j > Granularity then Push j+1 SortTo                   
            /* and do tail recursion on the left part */                         
            SortTo = j - 1                                                     
         end                                                                   
      end                                                                      
   end                                                                         

   /* Run insertionsort on the whole array to sort the small intervals */    
   InsertionSort(SortVar)                                                          
return                                                                         

Additionally there is no reason to call InsertionSort on the small intervals, because when QuickSort is finished the array is roughly sorted, such that there are only small intervals left to sort. And this is just the perfect case for InsertionSort.

If you don't have a stack, you can use recursion instead - but keep the tail recursion:

QuickSort(SortVar, SortFrom, SortTo)                                                                     
   Granularity = 10                                                            

   /* Tail recursion loop */                           
   while SortTo - SortFrom >= Granularity                                

      /* Find the pivot element using median of 3 */                            
      Pivot = Median(SortVar, SortFrom, (SortFrom + SortTo) / 2, SortTo)             
      /* Put the pivot element in front */                                     
      if Pivot > SortFrom then Swap(SortVar, SortFrom, Pivot)

      /* Place elements <=Key to the left and elements >Key to the right */           
      Key = GetKey(SortVar, SortFrom)                                                
      i = SortFrom + 1                                                      
      j = SortTo                                                            
      while i < j                                                        
         while GetKey(SortVar, i) <= Key; i = i + 1; end                          
         while GetKey(SortVar, j) > Key; j = j - 1; end                           
         if i < j then Swap(SortVar, i, j)                                       
      end                                                                   

      /* Put the pivot element back */                            
      if GetKey(j) < Key then Swap(SortVar, SortFrom, j)                                         

      if j - SortFrom < SortTo - j then                                  
         /* The left part is smallest - recursive call */                     
         if j - SortFrom > Granularity then QuickSort(SortVar, SortFrom, j-1)           
         /* and do tail recursion on the right part */                           
         SortFrom = j + 1                                                   
      end                                                                   
      else
         /* The right part is smallest - recursive call */                       
         if SortTo - j > Granularity then QuickSort(SortVar, j+1, SortTo)                   
         /* and do tail recursion on the left part */                         
         SortTo = j - 1                                                     
      end                                                                   
   end                                                                         

   /* Run insertionsort on the whole array to sort the small intervals */    
   InsertionSort(SortVar)                                                          
return                                                                         
易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!