Batch Normalization in Convolutional Neural Network

China☆狼群 提交于 2019-11-28 03:01:56

Let's start with the terms. Remember that the output of the convolutional layer is a 4-rank tensor [B, H, W, C], where B is the batch size, (H, W) is the feature map size, C is the number of channels. An index (x, y) where 0 <= x < H and 0 <= y < W is a spatial location.

Usual batchnorm

Now, here's how the batchnorm is applied in a usual way (in pseudo-code):

# t is the incoming tensor of shape [B, H, W, C]
# mean and stddev are computed along 0 axis and have shape [H, W, C]
mean = mean(t, axis=0)
stddev = stddev(t, axis=0)
for i in 0..B-1:
  out[i,:,:,:] = norm(t[i,:,:,:], mean, stddev)

Basically, it computes H*W*C means and H*W*C standard deviations across B elements. You may notice that different elements at different spatial locations have their own mean and variance and gather only B values.

Batchnorm in conv layer

This way is totally possible. But the convolutional layer has a special property: filter weights are shared across the input image (you can read it in detail in this post). That's why it's reasonable to normalize the output in the same way, so that each output value takes the mean and variance of B*H*W values, at different locations.

Here's how the code looks like in this case (again pseudo-code):

# t is still the incoming tensor of shape [B, H, W, C]
# but mean and stddev are computed along (0, 1, 2) axes and have just [C] shape
mean = mean(t, axis=(0, 1, 2))
stddev = stddev(t, axis=(0, 1, 2))
for i in 0..B-1, x in 0..H-1, y in 0..W-1:
  out[i,x,y,:] = norm(t[i,x,y,:], mean, stddev)

In total, there are only C means and standard deviations and each one of them is computed over B*H*W values. That's what they mean when they say "effective mini-batch": the difference between the two is only in axis selection (or equivalently "mini-batch selection").

I'm only 70% sure of what I say, so if it does not make sense, please edit or mention it before downvoting.

About location or spatial location: they mean the position of pixels in an image or feature map. A feature map is comparable to a sparse modified version of image where concepts are represented.

About so that different elements of the same feature map, at different locations, are normalized in the same way: some normalisation algorithms are local, so they are dependent of their close surrounding (location) and not the things far apart in the image. They probably mean that every pixel, regardless of their location, is treated just like the element of a set, independently of it's direct special surrounding.

About In Alg. 1, we let B be the set of all values in a feature map across both the elements of a mini-batch and spatial locations: They get a flat list of every values of every training example in the minibatch, and this list combines things whatever their location is on the feature map.

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!