问题
I was working with numbers of 200 digits in python. When finding the square root of a number using math.sqrt(n) I am getting a wrong answer.
In[1]: n=9999999999999999999999999999999999999999999999999999999999999999999999
999999999999999999999999998292000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000726067
In[2]: x=int(math.sqrt(n))
In[3]: x
Out[1]: 10000000000000000159028911097599180468360808563945281389781327
557747838772170381060813469985856815104L
In[4]: x*x
Out[2]: 1000000000000000031805782219519836346574107361670094060730052612580
0264077231077619856175974095677538298443892851483731336069235827852
3336313169161345893842466001164011496325176947445331439002442530816L
In[5]: math.sqrt(n)
Out[3]: 1e+100
The value of x is coming larger than expected since x*x (201 digits) is larger than n (200 digits). What is happening here? Is there some concept I am getting wrong here? How else can I find the root of very large numbers?
回答1:
math.sqrt
returns an IEEE-754 64-bit result, which is roughly 17 digits. There are other libraries that will work with high-precision values. In addition to the decimal
and mpmath
libraries mentioned above, I maintain the gmpy2
library (https://code.google.com/p/gmpy/).
>>> import gmpy2
>>> n=gmpy2.mpz(99999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999982920000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000726067)
>>> gmpy2.get_context().precision=2048
>>> x=gmpy2.sqrt(n)
>>> x*x
mpfr('99999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999982920000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000726067.0',2048)
>>>
The gmpy2
library can also return integer square roots (isqrt
) or quickly check if an integer is an exact square (is_square
).
回答2:
Using the decimal module:
import decimal
D = decimal.Decimal
n = D(99999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999982920000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000726067)
with decimal.localcontext() as ctx:
ctx.prec = 300
x = n.sqrt()
print(x)
print(x*x)
print(n-x*x)
yields
9999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999145.99999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999983754999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999998612677
99999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999982920000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000726067.0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
0E-100
回答3:
Here's an integer square root program using Hero's method that I wrote a while back. For the initial approximation it uses a number of half the bit length of the input value, so it starts converging pretty quickly. However, I haven't timed it to see if it's faster in Python than just using a simpler initial approximation. :)
#! /usr/bin/env python
''' Long integer square roots. Newton's method.
Written by PM 2Ring. Adapted from C to Python 2008.10.19
'''
import sys
def root(m):
# Get initial approximation
n, a, k = m, 1, 0
while n > a:
n >>= 1
a <<= 1
k += 1
#print k, ':', n, a
# Go back one step & average
a = n + (a>>2)
#print a
# Apply Newton's method
while k:
a = (a + m // a) >> 1
k >>= 1
#print k, ':', a
return a
def main():
m = len(sys.argv) > 1 and int(sys.argv[1]) or 2*10L**100
print "The Square Root of", m
print root(m)
if __name__ == '__main__':
main()
来源:https://stackoverflow.com/questions/28150824/using-the-sqrt-function-of-math-module-for-long-numbers-in-python