问题
I have a dataframe with a key column and a column which has an array of struct. The Schema looks like below.
root
|-- id: string (nullable = true)
|-- desc: array (nullable = false)
| |-- element: struct (containsNull = true)
| | |-- name: string (nullable = true)
| | |-- age: long (nullable = false)
The array "desc" can have any number of null values. I would like to create a final dataframe with the array having none of the null values using spark 1.6:
An example would be:
Key . Value
1010 . [[George,21],null,[MARIE,13],null]
1023 . [null,[Watson,11],[John,35],null,[Kyle,33]]
I want the final dataframe as:
Key . Value
1010 . [[George,21],[MARIE,13]]
1023 . [[Watson,11],[John,35],[Kyle,33]]
I tried doing this with UDF and case class but got
java.lang.ClassCastException: org.apache.spark.sql.catalyst.expressions.GenericRowWithSchema cannot be cast to....
Any help is greatly appreciated and I would prefer doing it without converting to RDDs if needed. Also I am new to spark and scala so thanks in advance!!!
回答1:
Given that the original dataframe has following schema
root
|-- id: string (nullable = true)
|-- desc: array (nullable = true)
| |-- element: struct (containsNull = true)
| | |-- name: string (nullable = true)
| | |-- age: long (nullable = false)
Defining a udf
function to remove the null values from the array should work for you
import org.apache.spark.sql.functions._
def removeNull = udf((array: Seq[Row])=> array.filterNot(_ == null).map(x => element(x.getAs[String]("name"), x.getAs[Long]("age"))))
df.withColumn("desc", removeNull(col("desc")))
where element
is a case class
case class element(name: String, age: Long)
and you should get
+----+-----------------------------------+
|id |desc |
+----+-----------------------------------+
|1010|[[George,21], [MARIE,13]] |
|1010|[[Watson,11], [John,35], [Kyle,33]]|
+----+-----------------------------------+
回答2:
Here is another version:
case class Person(name: String, age: Int)
root
|-- id: string (nullable = true)
|-- desc: array (nullable = true)
| |-- element: struct (containsNull = true)
| | |-- name: string (nullable = true)
| | |-- age: integer (nullable = false)
+----+-----------------------------------------------+
|id |desc |
+----+-----------------------------------------------+
|1010|[[George,21], null, [MARIE,13], null] |
|1023|[[Watson,11], null, [John,35], null, [Kyle,33]]|
+----+-----------------------------------------------+
val filterOutNull = udf((xs: Seq[Row]) => {
xs.flatMap {
case null => Nil
// convert the Row back to your specific struct:
case Row(s: String,i: Int) => List(Person(s, i))
}
})
val result = df.withColumn("filteredListDesc", filterOutNull($"desc"))
+----+-----------------------------------------------+-----------------------------------+
|id |desc |filteredListDesc |
+----+-----------------------------------------------+-----------------------------------+
|1010|[[George,21], null, [MARIE,13], null] |[[George,21], [MARIE,13]] |
|1023|[[Watson,11], null, [John,35], null, [Kyle,33]]|[[Watson,11], [John,35], [Kyle,33]]|
+----+-----------------------------------------------+-----------------------------------+
来源:https://stackoverflow.com/questions/50215195/remove-null-from-array-columns-in-dataframe-in-scala-with-spark-1-6