Pandas: Count time interval intersections over a group by

人盡茶涼 提交于 2021-02-07 19:00:45

问题


I have a dataframe of the following form

import pandas as pd

Out[1]:
df = pd.DataFrame({'id':[1,2,3,4,5],
          'group':['A','A','A','B','B'],
          'start':['2012-08-19','2012-08-22','2013-08-19','2012-08-19','2013-08-19'],
          'end':['2012-08-28','2013-09-13','2013-08-19','2012-12-19','2014-08-19']})

     id group       start         end
0   1     A  2012-08-19  2012-08-28
1   2     A  2012-08-22  2013-09-13
2   3     A  2013-08-19  2013-08-21
3   4     B  2012-08-19  2012-12-19
4   5     B  2013-08-19  2014-08-19

For given row in my dataframe I'd like to count the number of items in the same group that have an overlapping time interval.

For example in group A id 2 ranges from 22 August 2012 to 13 Sept 2013 and hence the overlap between id 1 (19 August 2012 to 28 August 2012) and also id 3 (19 August 2013 to 21 August 2013) for a count of 2.

Conversely there is no overlap between the items in group B

So for my example dataframe above i'd like to produce something like

Out[2]:
   id group       start         end  count
0   1     A  2012-08-19  2012-08-28      1
1   2     A  2012-08-22  2013-09-13      2
2   3     A  2013-08-19  2013-08-21      1
3   4     B  2012-08-19  2012-12-19      0
4   5     B  2013-08-19  2014-08-19      0

I could "brute-force" this but I'd like to know if there is a more efficient Pandas way of getting this done.

Thanks in advance for your help


回答1:


So, I would see how brute force fairs... if it's slow I'd cythonize this logic. It's not so bad, as whilst O(M^2) in group size, if there's lots of small groups it might not be so bad.

In [11]: def interval_overlaps(a, b):
    ...:     return min(a["end"], b["end"]) - max(a["start"], b["start"]) > np.timedelta64(-1)


In [12]: def count_overlaps(df1):
    ...:     return sum(interval_overlaps(df1.iloc[i], df1.iloc[j]) for i in range(len(df1) - 1) for j in range(i, len(df1)) if i < j)

In [13]: df.groupby("group").apply(count_overlaps)
Out[13]:
group
A    2
B    0
dtype: int64

The former is a tweaking of this interval overlap function.


Edit: Upon re-reading it looks like the count_overlaps is per-row, rather than per-group, so the agg function should be more like:

In [21]: def count_overlaps(df1):
    ...:     return pd.Series([df1.apply(lambda x: interval_overlaps(x, df1.iloc[i]), axis=1).sum() - 1 for i in range(len(df1))], df1.index)

In [22]: df.groupby("group").apply(count_overlaps)
Out[22]:
group
A      0    1
       1    2
       2    1
B      3    0
       4    0
dtype: int64

In [22]: df["count"] = df.groupby("group").apply(count_overlaps).values

In [23]: df
Out[23]:
         end group  id      start  count
0 2012-08-28     A   1 2012-08-19      1
1 2013-09-13     A   2 2012-08-22      2
2 2013-08-19     A   3 2013-08-19      1
3 2012-12-19     B   4 2012-08-19      0
4 2014-08-19     B   5 2013-08-19      0



回答2:


"brute-force"ish but gets the job done:

First converted the date strings to dates and then compared each row against the df with an apply.

df.start = pd.to_datetime(df.start)
df.end = pd.to_datetime(df.end)

df['count'] = df.apply(lambda row: len(df[ ( ( (row.start <= df.start) & (df.start <= row.end) ) \
                                            | ( (df.start <= row.start) & (row.start <= df.end) ) )
                           & (row.id != df.id) & (row.group == df.group) ]),axis=1)



回答3:


import datetime
def ol(a, b):
    l=[]
    for x in b:
        l.append(max(0, int(min(a[1], x[1]) - max(a[0], x[0])>=datetime.timedelta(minutes=0))))
    return sum(l)


df['New']=list(zip(df.start,df.end))
df['New2']=df.group.map(df.groupby('group').New.apply(list))
df.apply(lambda x : ol(x.New,x.New2),axis=1)-1

Out[495]: 
0    1
1    2
2    1
3    0
4    0
dtype: int64

Timings

#My method 
df.apply(lambda x : ol(x.New,x.New2),axis=1)-1

100 loops, best of 3: 5.39 ms per loop

#@Andy's Method 
df.groupby("group").apply(count_overlaps)    
10 loops, best of 3: 23.5 ms per loop

#@Nathan's Method

df.apply(lambda row: len(df[ ( ( (row.start <= df.start) & (df.start <= row.end) ) \
                       | ( (df.start <= row.start) & (row.start <= df.end) ) )
                       & (row.id != df.id) & (row.group == df.group) ]),axis=1)

10 loops, best of 3: 25.8 ms per loop


来源:https://stackoverflow.com/questions/46833388/pandas-count-time-interval-intersections-over-a-group-by

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!