Minimal executable size now 10x larger after linking than 2 years ago, for tiny programs?

旧时模样 提交于 2021-02-02 02:33:08

问题


For a university course, I like to compare code-sizes of functionally similar programs if written and compiled using gcc/clang versus assembly. In the process of re-evaluating how to further shrink the size of some executables, I couldn't trust my eyes when the very same assembly code I assembled/linked 2 years ago now has grown >10x in size after building it again (which true for multiple programs, not only helloworld):

$ make
as -32 -o helloworld-asm-2020.o helloworld-asm-2020.s
ld -melf_i386 -o helloworld-asm-2020 helloworld-asm-2020.o

$ ls -l
-rwxr-xr-x 1 xxx users  708 Jul 18  2018 helloworld-asm-2018*
-rwxr-xr-x 1 xxx users 8704 Nov 25 15:00 helloworld-asm-2020*
-rwxr-xr-x 1 xxx users 4724 Nov 25 15:00 helloworld-asm-2020-n*
-rwxr-xr-x 1 xxx users 4228 Nov 25 15:00 helloworld-asm-2020-n-sstripped*
-rwxr-xr-x 1 xxx users  604 Nov 25 15:00 helloworld-asm-2020.o*
-rw-r--r-- 1 xxx users  498 Nov 25 14:44 helloworld-asm-2020.s

The assembly code is:

.code32
.section .data
msg: .ascii "Hello, world!\n"
         len = . - msg

.section .text
.globl _start

_start:
        movl $len, %edx   # EDX = message length
        movl $msg, %ecx   # ECX = address of message
        movl $1, %ebx     # EBX = file descriptor (1 = stdout)
        movl $4, %eax     # EAX = syscall number (4 = write)
        int $0x80         # call kernel by interrupt

        # and exit
        movl $0, %ebx     # return code is zero
        movl $1, %eax     # exit syscall number (1 = exit)
        int $0x80         # call kernel again

The same hello world program, compiled using GNU as and GNU ld (always using 32-bit assembly) was 708 bytes then, and has grown to 8.5K now. Even when telling the linker to turn off page alignment (ld -n), it still has almost 4.2K. stripping/sstripping doesn't pay off either.

readelf tells me that the start of section headers is much later in the code (byte 468 vs 8464), but I have no idea why. It's running on the same arch system as in 2018, the Makefile is the same and I'm not linking against any libraries (especially not libc). I guess something regarding ld has changed due to the fact that the object file is still quite small, but what and why?

Disclaimer: I'm building 32-bit executables on an x86-64 machine.

Edit: I'm using GNU binutils (as & ld) version 2.35.1 Here is a base64-encoded archive which includes the source and both executables (small old one, large new one) :

cat << EOF | base64 -d | tar xj
QlpoOTFBWSZTWVaGrEQABBp////xebj/7//Xf+a8RP/v3/rAAEVARARAeEADBAAAoCAI0AQ+NAam
ytMpCGmpDVPU0aNpGmh6Rpo9QAAeoBoADQaNAADQ09IAACSSGUwaJpTNQGE9QZGhoADQPUAA0AAA
AA0aA4AAAABoAAAAA0GgAAAAZAGgAHAAAAANAAAAAGg0AAAADIA0AASJCBIyE8hHpqPVPUPU/VAa
fqn6o0ep6BB6TQaNGj0j1ABobU00yeU9JYiuVVZKYE+dKNa3wls6x81yBpGAN71NoylDUvNryWiW
E4ER8XkfpaJcPb6ND12ULEqkQX3eaBHP70Apa5uFhWNDy+U3Ekj+OLx5MtDHxQHQLfMcgCHrGayE
Dc76F4ZC4rcRkvTW4S2EbJAsbBGbQxSbx5o48zkyk5iPBBhJowtCSwDBsQBc0koYRSO6SgJNL0Bg
EmCoxCDAs5QkEmTGmQUgqZNIoxsmwDmDQe0NIDI0KjQ64leOr1fVk6AaVhjOAJjLrEYkYy4cDbyS
iXSuILWohNh+PA9Izk0YUM4TQQGEYNgn4oEjGmAByO+kzmDIxEC3Txni6E1WdswBJLKYiANdiQ2K
00jU/zpMzuIhjTbgiBqE24dZWBcNBBAAioiEhCQEIfAR8Vir4zNQZFgvKZa67Jckh6EHZWAWuf6Q
kGy1lOtA2h9fsyD/uPPI2kjvoYL+w54IUKBEEYFBIWRNCNpuyY86v3pNiHEB7XyCX5wDjZUSF2tO
w0PVlY2FQNcLQcbZjmMhZdlCGkVHojuICHMMMB5kQQSZRwNJkYTKz6stT/MTWmozDCcj+UjtB9Cf
CUqAqqRlgJdREtMtSO4S4GpJE2I/P8vuO9ckqCM2+iSJCLRWx2Gi8VSR8BIkVX6stqIDmtG8xSVU
kk7BnC5caZXTIynyI0doXiFY1+/Csw2RUQJroC0lCNiIqVVUkTqTRMYqKNVGtCJ5yfo7e3ZpgECk
PYUEihPU0QVgfQ76JA8Eb16KCbSzP3WYiVApqmfDhUk0aVc+jyBJH13uKztUuva8F4YdbpmzomjG
kSJmP+vCFdKkHU384LdRoO0LdN7VJlywJ2xJdM+TMQ0KhMaicvRqfC5pHSu+gVDVjfiss+S00ikI
DeMgatVKKtcjsVDX09XU3SzowLWXXunnFZp/fP3eN9Rj1ubiLc0utMl3CUUkcYsmwbKKrWhaZiLO
u67kMSsW20jVBcZ5tZUKgdRtu0UleWOs1HK2QdMpyKMxTRHWhhHwMnVEsWIUEjIfFEbWhRTRMJXn
oIBSEa2Q0llTBfJV0LEYEQTBTFsDKIxhgqNwZB2dovl/kiW4TLp6aGXxmoIpVeWTEXqg1PnyKwux
caORGyBhTEPV2G7/O3y+KeAL9mUM4Zjl1DsDKyTZy8vgn31EDY08rY+64Z/LO5tcRJHttMYsz0Fh
CRN8LTYJL/I/4u5IpwoSCtDViIA=
EOF

Update: When using ld.gold instead of ld.bfd (to which /usr/bin/ld is symlinked to by default), the executable size becomes as small as expected:

$ cat Makefile 
TARGET=helloworld
all:
    as -32 -o ${TARGET}-asm.o ${TARGET}-asm.s
    ld.bfd -melf_i386 -o ${TARGET}-asm-bfd ${TARGET}-asm.o
    ld.gold -melf_i386 -o ${TARGET}-asm-gold ${TARGET}-asm.o
    rm ${TARGET}-asm.o

$ make -q
$ ls -l
total 68
-rw-r--r-- 1 eso eso   200 Dec  1 13:57 Makefile
-rwxrwxr-x 1 eso eso  8700 Dec  1 13:57 helloworld-asm-bfd
-rwxrwxr-x 1 eso eso   732 Dec  1 13:57 helloworld-asm-gold
-rw-r--r-- 1 eso eso   498 Dec  1 13:44 helloworld-asm.s

Maybe I just used gold previously without being aware.


回答1:


It's not 10x in general, it's page-alignment of a couple sections as Jester says, per changes to ld's default linker script for security reasons:

  • First change: Making sure data from .data isn't present in any of the mapping of .text, so none of that static data is available for ROP / Spectre gadgets in an executable page. (In older ld, that meant the program-headers mapped the same disk-block twice, also into a RW-without-exec segment for the actual .data section. The executable mapping was still read-only.)
  • More recent change: Separate .rodata from .text into separate segments, again so static data isn't mapped into an executable page. Previously, const char code[]= {...} could be cast to a function pointer and called, without needing mprotect or gcc -z execstack or other tricks, if you wanted to test shellcode that way.

That extra space is just 00 padding and will compress well in a .tar.gz or whatever.

So it has a worst-case upper bound of about 2x 4k pages, and tiny executables are close to that worst case.

gcc -Wl,--nmagic will turn off page-alignment of sections if you want that for some reason. (see the ld(1) man page) I don't know why that doesn't pack everything down to the old size. Perhaps checking the default linker script would shed some light, but it's pretty long. Run ld --verbose to see it.

stripping won't help for padding that's part of a section; I think it can only remove whole sections.



来源:https://stackoverflow.com/questions/65037919/minimal-executable-size-now-10x-larger-after-linking-than-2-years-ago-for-tiny

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!