Why RandomForestClassifier on CPU (using SKLearn) and on GPU (using RAPIDs) get differents scores, very different?

拟墨画扇 提交于 2021-01-28 18:42:18

问题


I am using RandomForestClassifier on CPU with SKLearn and on GPU using RAPIDs. I am doing a benchmark between these two libraries about speed up and scoring using Iris dataset (it is a try, in the future, I will change the dataset for a better benchmarking, I am starting with these two libraries).

The problem is when I measure the score on CPU always get a value of 1.0 but when I try to measure the score on GPU I get a variable value between 0.2 and 1.0 and I do not understand why could be it happening.

First of all, libraries version I am using are:

NumPy Version: 1.17.5
Pandas Version: 0.25.3
Scikit-Learn Version: 0.22.1
cuPY Version: 6.7.0
cuDF Version: 0.12.0
cuML Version: 0.12.0
Dask Version: 2.10.1
DaskCuda Version: 0+unknown
DaskCuDF Version: 0.12.0
MatPlotLib Version: 3.1.3
SeaBorn Version: 0.10.0

The code I use for SKLearn RandomForestClassifier is:

# Read data in host memory
host_s_csv = pd.read_csv('./DataSet/iris.csv', header = 0, delimiter = ',') # Get complete CSV
host_s_data = host_s_csv.iloc[:, [0, 1, 2, 3]].astype('float32') # Get data columns
host_s_labels = host_s_csv.iloc[:, 4].astype('category').cat.codes # Get labels column

# Plot data
#sns.pairplot(host_s_csv, hue = 'variety');

# Split train and test data
host_s_data_train, host_s_data_test, host_s_labels_train, host_s_labels_test = sk_train_test_split(host_s_data, host_s_labels, test_size = 0.2, random_state = 0)

# Create RandomForest model
sk_s_random_forest = skRandomForestClassifier(n_estimators = 40,
                                             max_depth = 16,
                                             max_features = 1.0,
                                             random_state = 10, 
                                             n_jobs = 1)

# Fit data in RandomForest
sk_s_random_forest.fit(host_s_data_train, host_s_labels_train)

# Predict data
sk_s_random_forest_labels_predicted = sk_s_random_forest.predict(host_s_data_test)

# Check score
print('accuracy_score: ', sk_accuracy_score(host_s_labels_test, sk_s_random_forest_labels_predicted))

The code I use for RAPIDs RandomForestClassifier is:

# Read data in device memory
device_s_csv = cudf.read_csv('./DataSet/iris.csv', header = 0, delimiter = ',') # Get complete CSV
device_s_data = device_s_csv.iloc[:, [0, 1, 2, 3]].astype('float32') # Get data columns
device_s_labels = device_s_csv.iloc[:, 4].astype('category').cat.codes # Get labels column

# Plot data
#sns.pairplot(device_s_csv.to_pandas(), hue = 'variety');

# Split train and test data
device_s_data_train, device_s_data_test, device_s_labels_train, device_s_labels_test = cu_train_test_split(device_s_data, device_s_labels, train_size = 0.8, shuffle = True, random_state = 0)

# Use same data as host
#device_s_data_train = cudf.DataFrame.from_pandas(host_s_data_train)
#device_s_data_test = cudf.DataFrame.from_pandas(host_s_data_test)
#device_s_labels_train = cudf.Series.from_pandas(host_s_labels_train).astype('int32')
#device_s_labels_test = cudf.Series.from_pandas(host_s_labels_test).astype('int32')

# Create RandomForest model
cu_s_random_forest = cusRandomForestClassifier(n_estimators = 40,
                                               max_depth = 16,
                                               max_features = 1.0,
                                               n_streams = 1)

# Fit data in RandomForest
cu_s_random_forest.fit(device_s_data_train, device_s_labels_train)

# Predict data
cu_s_random_forest_labels_predicted = cu_s_random_forest.predict(device_s_data_test)

# Check score
print('accuracy_score: ', cu_accuracy_score(device_s_labels_test, cu_s_random_forest_labels_predicted))

And an example of the iris dataset I am using is:

Do you know why could be it happening? Both models are set equal, same parameters,... I have no idea why this big difference between scores.

Thank you.


回答1:


This is caused by a known issue in our predict code, which was corrected in 0.13 with a warning and fall back to CPU on multi-class classifications. In version 0.12, we didn't have the warning or fallback, so, if you didn't know to use predict_model="CPU' on a multi-class classification, you'd get a [much] lower prediction score than you should with the model you just fit.

See issue here: https://github.com/rapidsai/cuml/issues/1623

Here's some code to help you and others. It's been modified so it is a bit easier for others in the future. I get ~ 0.9333 on a GV100 and RAPIDS 0.12 stable.

import cudf as cu
from cuml.ensemble import RandomForestClassifier as cusRandomForestClassifier
from cuml.metrics import accuracy_score as cu_accuracy_score
from cuml.preprocessing.model_selection import train_test_split as cu_train_test_split
import numpy as np

# data link: https://gist.githubusercontent.com/curran/a08a1080b88344b0c8a7/raw/639388c2cbc2120a14dcf466e85730eb8be498bb/iris.csv

# Read data
df = cu.read_csv('./iris.csv', header = 0, delimiter = ',') # Get complete CSV

# Prep data
X = df.iloc[:, [0, 1, 2, 3]].astype(np.float32) # Get data columns.  Must be float32 for our Classifier
y = df.iloc[:, 4].astype('category').cat.codes # Get labels column.  Will convert to int32

cu_s_random_forest = cusRandomForestClassifier(
                                           n_bins = 16, 
                                           n_estimators = 40,
                                           max_depth = 16,
                                           max_features = 1.0,
                                           n_streams = 1)

train_data, test_data, train_label, test_label = cu_train_test_split(X, y, train_size=0.8)

# Fit data in RandomForest
cu_s_random_forest.fit(train_data,train_label)

# Predict data
predict = cu_s_random_forest.predict(test_data, predict_model="CPU") # use CPU to do multi-class classifications
print(predict)

# Check score
print('accuracy_score: ', cu_accuracy_score(test_label, predict))



回答2:


I tried this from your example above , converted things to numpy and it worked

import numpy as np
train_label_np = host_s_labels_train.as_matrix().astype(np.int32)
train_data_np = host_s_data_train.as_matrix().astype(np.float32)
test_label_np = host_s_labels_test.as_matrix().astype(np.int32)
test_data_np = host_s_data_test.as_matrix().astype(np.float32)

cu_s_random_forest = cusRandomForestClassifier(n_estimators = 40,
                                           max_depth = 16, n_bins =16,
                                           max_features = 1.0,
                                           n_streams = 1)

# Fit data in RandomForest
cu_s_random_forest.fit(train_data_np,train_label_np)

# Predict data (GPU does not predict for multi-class at the moment. Fixed in 0.13)
predict_np = cu_s_random_forest.predict(test_data_np, predict_model='CPU')

# Check score
print('accuracy_score: ', sk_accuracy_score(test_label_np, predict_np))


来源:https://stackoverflow.com/questions/60651169/why-randomforestclassifier-on-cpu-using-sklearn-and-on-gpu-using-rapids-get

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!