问题
I have a dataframe in a format such as the following:
Index Name Fruit Quantity
0 John Apple Red 10
1 John Apple Green 5
2 John Orange Cali 12
3 Jane Apple Red 10
4 Jane Apple Green 5
5 Jane Orange Cali 18
6 Jane Orange Spain 2
I need to turn it into a dataframe such as this:
Index Name All Fruits Apples Total Oranges Total
0 John Apple Red, Apple Green, Orange Cali 15 12
1 Jane Apple Red, Apple Green, Orange Cali, Orange Spain 15 20
Question is how do I do this? I have looked at the groupby docs as well as a number of posts on pivot and aggregation but translating that into this use case somehow escapes me. Any help or pointers much appreciated.
Cheers!
回答1:
Use GroupBy.agg with join
, create column F
by split and pass to DataFrame.pivot_table, last join together by DataFrame.join:
df1 = df.groupby('Name', sort=False)['Fruit'].agg(', '.join)
df2 = (df.assign(F = df['Fruit'].str.split().str[0])
.pivot_table(index='Name',
columns='F',
values='Quantity',
aggfunc='sum')
.add_suffix(' Total'))
df3 = df1.to_frame('All Fruits').join(df2).reset_index()
print (df3)
Name All Fruits Apple Total \
0 John Apple Red, Apple Green, Orange Cali 15
1 Jane Apple Red, Apple Green, Orange Cali, Orange Spain 15
Orange Total
0 12
1 20
来源:https://stackoverflow.com/questions/65323569/how-do-you-pivot-using-conditions-aggregation-and-concatenation-in-pandas