问题
I need to wite a code to perform a 3D convolution in python using numpy, with 3x3 kernels. I've done it right for 2D arrays like B&W images but when i try to extend it to 3D arrays like RGB is a mess. I need help to improve my method. Here is the 2D code:
def convolucion_3x3(arreglo, kernel):
(dim_x, dim_y) = arreglo.shape
(ker_x, ker_y) = kernel.shape
matriz_convolucionada = np.zeros((dim_x, dim_y))
for i in range(dim_x):
for j in range(dim_y):
resultado = 0
for x in range(-1, 2):
try:
if i + x not in range(dim_x):
raise ValueError()
for y in range(-1, 2):
try:
if j + y not in range(dim_y):
raise ValueError()
resultado += arreglo[i + x, j + y] * kernel[x + 1][y + 1]
'''
Para el kernel sumo un 1 a cada índice para que lo corra desde 0 hasta 2 y no de -1 a 1
'''
except ValueError:
pass
except ValueError:
pass
matriz_convolucionada[i][j] = resultado
return matriz_convolucionada
The next one is my attempt to the RGB images:
def convolucion(arreglo, kernel): (dim_x, dim_y, dim_z) = arreglo.shape (ker_x, ker_y) = kernel.shape
matriz_convolucionada = np.zeros((dim_x, dim_y, dim_z))
for k in range(dim_z):
for i in range(dim_x):
for j in range(dim_y):
resultado = 0
for x in range(-1, 2):
try:
if i + x not in range(dim_x):
raise ValueError()
for y in range(-1, 2):
try:
if j + y not in range(dim_y):
raise ValueError()
resultado += arreglo[i + x, j + y, k] * kernel[x + 1][y + 1]
'''
Para el kernel sumo un 1 a cada índice para que lo corra desde 0 hasta 2 y no de -1 a 1
'''
except ValueError:
pass
except ValueError:
pass
matriz_convolucionada[i][j][k] = resultado
return matriz_convolucionada
回答1:
While looping through would work, it can also be difficult to follow the nested loops. You might consider invoking the convolution theorem to perform the convolution easier. See here.
Using numpy's fft module, you can compute an n-dimensional discrete Fourier transform of the original stack of images and multiply it by the n-dimensional Fourier transform (documentation found here)of a kernel of the same size. Since your 2D kernel is a 3x3 array, it's a 3x3xz square 'pillar.' You can just pad this array with zeros to increase the dimensions accordingly.
Try this:
import numpy as np
import math
radius = 2
r2 = np.arange(-radius, radius+1)**2
sphere = r2[:, None, None] + r2[:, None] + r2
sphere -= np.max(sphere)
sphere = -sphere*2
array_len = 10*radius
array = np.zeros((array_len, array_len, array_len))
center = slice(array_len//2-radius,
array_len//2+radius+1), slice(array_len//2-radius,
array_len//2+radius+1),slice(array_len//2-radius,
array_len//2+radius+1)
array[center] = sphere
k_len = 3
kernel_2D = np.ones((k_len,k_len))
kernel = np.zeros_like(array)
center_k = slice(array_len//2-math.ceil(k_len/2),
array_len//2+k_len//2), slice(array_len//2-math.ceil(k_len/2),
array_len//2+k_len//2)
for i in range(kernel.shape[2]):
kernel[center_k+(i,)] = kernel_2D
def fft(array):
fft = np.fft.ifftshift(np.fft.fftn(np.fft.fftshift(array)))
return fft
def ifft(array):
ifft = np.fft.fftshift(np.fft.ifftn(np.fft.ifftshift(array)))
return ifft
def conv_3D(array, kernel):
conv = np.abs(ifft(fft(array)*fft(kernel)))
return conv
conv = conv_3D(array, kernel)
This convolves a sphere of radius 2 with a pillar of side length 3.
来源:https://stackoverflow.com/questions/47441952/3d-convolution-in-python