Is there a valid array monad transformer?

点点圈 提交于 2021-01-27 18:33:10

问题


I know how to implement the single linked list monad transformer but couldn't get its array counterpart running. The problem is that there is a grouping effect which renders the transformer only valid for commutative base monads. Here is an example where for the sake of simplicity both the transformer and the base monad are arrays and there is no transformer type wrapper:

// ARRAY

const arrMap = f => xs =>
  xs.map((x, i) => f(x, i));

const arrAp = tf => xs =>
  arrFold(acc => f =>
    arrAppend(acc)
      (arrMap(x => f(x)) (xs)))
        ([])
          (tf);

const arrOf = x => [x];

const arrChain = mx => fm =>
  arrFold(acc => x =>
    arrAppend(acc) (fm(x))) ([]) (mx);

// Transformer

const arrChainT = ({map, ap, of ,chain}) => mmx => fmm =>
  chain(mmx) (mx => {
    const go = ([x, ...xs]) =>
      x === undefined
        ? of([])
        : ap(map(arrCons) (fmm(x))) (go(xs));

    return chain(go(mx)) (ys => of(arrFold(arrAppend) ([]) (ys)));
  });

const arrOfT = of => x => of([x]);

// Transformer stack

const arrArrChain = arrChainT(
  {map: arrMap, ap: arrAp, of: arrOf, chain: arrChain});

const arrArrOf = arrOfT(arrOf);

// auxiliary functions

const arrFold = f => init => xs => {
  let acc = init;
  
  for (let i = 0; i < xs.length; i++)
    acc = f(acc) (xs[i], i);

  return acc;
};

const arrAppend = xs => ys =>
  xs.concat(ys);

const arrCons = x => xs =>
  [x].concat(xs);

// MAIN

foo = x =>
  x === 0
    ? [[0, 1]]
    : [[0], [1]];

console.log(JSON.stringify(
  arrArrChain(arrArrChain(foo(0)) (foo)) (foo)));
    // yields [[0,1,0,0,1],[0,1,1,0,1],[0,1,0,0],[0,1,0,1],[0,1,1,0],[0,1,1,1]]

console.log(JSON.stringify(
  arrArrChain(foo(0)) (x => arrArrChain(foo(x)) (foo))));
    // yields [[0,1,0,0,1],[0,1,0,0],[0,1,0,1],[0,1,1,0,1],[0,1,1,0],[0,1,1,1]]

Both computations should yield the same result. Now my question is: Is there a way to implement the array transformer in a lawful way?


回答1:


The array monad transformer is the same as the list monad transformer.

// Step m a = null | { head : a, tail : ListT m a }
// ListT m a = m (Step m a)

// nil : Monad m -> ListT m a
const nil = M => M.pure(null);

// cons : Monad m -> a -> ListT m a -> ListT m a
const cons = M => head => tail => M.pure({ head, tail });

// foldr : Monad m -> (a -> m b -> m b) -> m b -> ListT m a -> m b
const foldr = M => f => a => m => M.bind(m)(step =>
    step ? f(step.head)(foldr(M)(f)(a)(step.tail)) : a);

// append : Monad m -> ListT m a -> ListT m a -> ListT m a
const append = M => m1 => m2 => foldr(M)(cons(M))(m2)(m1);

// pure : Monad m -> a -> ListT m a
const pure = M => x => cons(M)(x)(nil(M));

// bind : Monad m -> ListT m a -> (a -> ListT m b) -> ListT m b
const bind = M => m => f => foldr(M)(x => append(M)(f(x)))(nil(M))(m);

// MonadListT : Monad m -> Monad (ListT m)
const MonadListT = M => ({ pure: pure(M), bind: bind(M) });

// MonadArray : Monad Array
const MonadArray = { pure: x => [x], bind: a => f => a.flatMap(f) };

// MonadListArray : Monad (ListT Array)
const MonadListArray = MonadListT(MonadArray);

// fromArray : Monad m -> Array a -> ListT m a
const fromArray = M => a => a.reduceRight((xs, x) => cons(M)(x)(xs), nil(M));

// lift : Monad m -> m a -> ListT m a
const lift = M => m => M.bind(m)(pure(M));

// foo : Nat -> ListT Array Nat
const foo = x => x === 0
    ? fromArray(MonadArray)([0, 1])
    : lift(MonadArray)([0, 1]);

// associativityLHS : Monad m -> m a -> (a -> m b) -> (b -> m c) -> m c
const associativityLHS = M => m => k => h => M.bind(M.bind(m)(k))(h);

// associativityRHS : Monad m -> m a -> (a -> m b) -> (b -> m c) -> m c
const associativityRHS = M => m => k => h => M.bind(m)(x => M.bind(k(x))(h));

// lhs :: ListT Array Nat
const lhs = associativityLHS(MonadListArray)(foo(0))(foo)(foo);

// rhs :: ListT Array Nat
const rhs = associativityRHS(MonadListArray)(foo(0))(foo)(foo);

console.log(JSON.stringify(lhs) === JSON.stringify(rhs));
console.log(JSON.stringify(lhs));

Note that each step of the list is wrapped in the argument monad. This allows other monadic actions to be interleaved and it's necessary to preserve the monad laws if the argument monad is not commutative.



来源:https://stackoverflow.com/questions/64412611/is-there-a-valid-array-monad-transformer

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!