How to write Azure machine learning batch scoring results to data lake?

醉酒当歌 提交于 2021-01-27 18:32:11

问题


I'm trying to write the output of batch scoring into datalake:

    parallel_step_name = "batchscoring-" + datetime.now().strftime("%Y%m%d%H%M")
    
    output_dir = PipelineData(name="scores", 
                              datastore=def_ADL_store,
                              output_mode="upload",
                              output_path_on_compute="path in data lake")

parallel_run_config = ParallelRunConfig(
    environment=curated_environment,
    entry_script="use_model.py",
    source_directory="./",
    output_action="append_row",
    mini_batch_size="20",
    error_threshold=1,
    compute_target=compute_target,
    process_count_per_node=2,
    node_count=2
)
    
    batch_score_step = ParallelRunStep(
        name=parallel_step_name,
        inputs=[test_data.as_named_input("test_data")],
        output=output_dir,
        parallel_run_config=parallel_run_config,
        allow_reuse=False
    )

However I meet the error: "code": "UserError", "message": "User program failed with Exception: Missing argument --output or its value is empty."

How can I write results of batch score to data lake?


回答1:


I don’t think ADLS is supported for PipelineData. My suggestion is to use the workspace’s default blob store for the PipelineData, then use a DataTransferStep for after the ParallelRunStep is completed.



来源:https://stackoverflow.com/questions/63296185/how-to-write-azure-machine-learning-batch-scoring-results-to-data-lake

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!