问题
I want to use pillow for some simple handwritten image recognition, and it will be real-time so I will need to call my function 5-10 times a second. I'm loading the image and am only accessing 1 in 20^2 pixels so I really don't need all the image. I need to reduce the image loading time.
I've never used a python image library and would appreciate all suggestions.
from PIL import Image
import time
start = time.time()
im = Image.open('ir/IMG-1949.JPG')
width, height = im.size
px = im.load()
print("loading: ", time.time() - start)
desired loading time: <50ms, actual loading time: ~150ms
回答1:
Updated Answer
Since I wrote this answer, John Cupitt (author of pyvips
) has come up with some improvements and corrections and fairer code and timings and has kindly shared them here. Please look at his improved version, alongside or even in preference to my code below.
Original Answer
The JPEG library has a "shrink-on-load" feature which allows a lot of I/O and decompression to be avoided. You can take advantage of this with PIL/Pillow using the Image.draft()
function, so instead of reading the full 4032x3024 pixels like this:
from PIL import Image
im = Image.open('image.jpg')
px = im.load()
which takes 297ms on my Mac, you can do the following and read 1008x756 pixels, i.e. 1/4 the width and 1/4 the height:
im = Image.open('image.jpg')
im.draft('RGB',(1008,756))
px = im.load()
and that takes only 75ms, i.e. it is 4x faster.
Just for kicks, I tried comparing various techniques as follows:
#!/usr/bin/env python3
import numpy as np
import pyvips
import cv2
from PIL import Image
def usingPIL(f):
im = Image.open(f)
return np.asarray(im)
def usingOpenCV(f):
arr = cv2.imread(f,cv2.IMREAD_UNCHANGED)
return arr
def usingVIPS(f):
image = pyvips.Image.new_from_file(f, access="sequential")
mem_img = image.write_to_memory()
imgnp=np.frombuffer(mem_img, dtype=np.uint8).reshape(image.height, image.width, 3)
return imgnp
def usingPILandShrink(f):
im = Image.open(f)
im.draft('RGB',(1008,756))
return np.asarray(im)
def usingVIPSandShrink(f):
image = pyvips.Image.new_from_file(f, access="sequential", shrink=4)
mem_img = image.write_to_memory()
imgnp=np.frombuffer(mem_img, dtype=np.uint8).reshape(image.height, image.width, 3)
return imgnp
And loaded that into ipython
and tested like this:
%timeit usingPIL('image.jpg')
315 ms ± 8.76 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
%timeit usingOpenCV('image.jpg')
102 ms ± 1.5 ms per loop (mean ± std. dev. of 7 runs, 10 loops each)
%timeit usingVIPS('image.jpg')
69.1 ms ± 31.3 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
%timeit usingPILandShrink('image.jpg')
77.2 ms ± 994 µs per loop (mean ± std. dev. of 7 runs, 10 loops each)
%timeit usingVIPSandShrink('image.jpg')
42.9 ms ± 332 µs per loop (mean ± std. dev. of 7 runs, 10 loops each)
It seems like pyVIPS is the clear winner here!
Keywords: Python, PIL, Pillow, image, image processing, JPEG, shrink-on-load, shrink on load, draft mode, read performance, speedup.
来源:https://stackoverflow.com/questions/57663734/how-to-speed-up-image-loading-in-pillow-python