问题
I am trying to split a column with comma delimited values into 2 columns but the str.split function returns columns with 0's and 1's instead of the split string values
I have a dataframe with a column 'Full Name' which has a full name with a comma separating last name from first name.
I used the str.split function which works when I execute it for display only. But: when I try to use the same function to add 2 new columns to the same dataframe with the split data, I get 2 new columns with the first populated with 0's and the second with 1's all the way.
The code that works to display the split data:
df2015_2019.iloc[:,0].str.split(',', expand=True)
Code that doesn't work to create new columns with split data:
df2015_2019['Lname'],df2015_2019['Fname'] = df2015_2019.iloc[:,0].str.split(',', expand=True)
I get a column 'Lname' with all 0's and a column 'Fname' with all 1's
回答1:
Another way around to achieve this as follows..
Example DatatSet:
>>> df = pd.DataFrame({'Name': ['Karn,Kumar', 'John,Jimlory']})
>>> df
Name
0 Karn,Kumar
1 John,Jimlory
Result:
You can assign the column name while splitting the values as below.
>>> df[['First Name','Last Name']] = df['Name'].str.split(",", expand=True)
>>> df
Name First Name Last Name
0 Karn,Kumar Karn Kumar
1 John,Jimlory John Jimlory
Or, as another answer stated..
>>> df['Name'].str.split(",", expand=True).rename({0: 'First_Name', 1: 'Second_Name'}, axis=1)
First_Name Second_Name
0 Karn Kumar
1 John Jimlory
OR
>>> df['Name'].str.rsplit(",", expand=True).rename(columns={0:'Fist_Name', 1:'Last_Name'})
Fist_Name Last_Name
0 Karn Kumar
1 John Jimlory
Note: you can use axis = columns
or axis =1
both are same.
Just another way using Series.str.partition with little altercation, However, we have to use drop
as partition
preserves the comma "," as well as a column.
>>> df['Name'].str.partition(",", True).rename(columns={0:'Fist_Name', 2:'Last_Name'}).drop(columns =[1])
Fist_Name Last_Name
0 Karn Kumar
1 John Jimlory
Just make it slim, we can define dict values for the rename
.
1 - using str.partition
..
dict = {0: 'First_Name', 2: 'Second_Name'}
df = df['Name'].str.partition(",", True).rename(dict2,axis=1).drop(columns =[1])
print(df)
First_Name Second_Name
0 Karn Kumar
1 John Jimlory
2 - using str.split()
..
dict = {0: 'First_Name', 1: 'Second_Name'}
df = df['Name'].str.split(",", expand=True).rename(dict, axis=1)
print(df)
First_Name Second_Name
0 Karn Kumar
1 John Jimlory
回答2:
You can rename the column after the split:
df = pd.DataFrame({'a': ['a,b', 'c,d']})
df['a'].str.split(',', expand=True).rename({0: 'Lname', 1: 'Fname'}, axis='columns')
This prints:
Lname Fname
0 a b
1 c d
回答3:
The pandas.Series.str
accessor can be assigned to the columns.
split
first (optionally, usen=1
) to keep exactly one split.- use another
str
df['Lname'], df['Fname'] = df['Name'].str.split(',').str
来源:https://stackoverflow.com/questions/57463127/splitting-a-column-in-dataframe-using-str-split-function