问题
How do you filter out/search in aggregate results efficiently?
Imagine you have 1 million documents in elastic search. In those documents, you have a multi_field (keyword, text) tags
:
{
...
tags: ['Race', 'Racing', 'Mountain Bike', 'Horizontal'],
...
},
{
...
tags: ['Tracey Chapman', 'Silverfish', 'Blue'],
...
},
{
...
tags: ['Surfing', 'Race', 'Disgrace'],
...
},
You can use these values as filters, (facets), against a query to pull only the documents that contain this tag:
...
"filter": [
{
"terms": {
"tags": [
"Race"
]
}
},
...
]
But you want the user to be able to query for possible tag filters. So if the user types, race
the return should show (from previous example), ['Race', 'Tracey Chapman', 'Disgrace']
. That way, the user can query for a filter to use. In order to accomplish this, I had to use aggregates:
{
"aggs": {
"topics": {
"terms": {
"field": "tags",
"include": ".*[Rr][Aa][Cc][Ee].*", // I have to dynamically form this
"size": 6
}
}
},
"size": 0
}
This gives me exactly what I need! But it is slow, very slow. I've tried adding the execution_hint, it does not help me.
You may think, "Just use a query before the aggregate!" But the issue is that it'll pull all values for all documents in that query. Meaning, you can be displaying tags that are completely unrelated. If I queried for race
before the aggregate, and did not use the include regex, I would end up with all those other values, like 'Horizontal', etc...
How can I rewrite this aggregation to work faster? Is there a better way to write this? Do I really have to make a separate index just for values? (sad face) Seems like this would be a common issue but have found no answers through documentation and googling.
回答1:
You certainly don't need a separate index just for the values...
Here's my take on it:
- What you're doing with the regex is essentially what should've been done by a tokenizer -- i.e. constructing substrings (or N-grams) such that they can be targeted later.
This means that the keywordRace
will need to be tokenized into the n-grams["rac", "race", "ace"]
. (It doesn't really make sense to go any lower than 3 characters -- most autocomplete libraries choose to ignore fewer than 3 characters because the possible matches balloon too quickly.)
Elasticsearch offers the N-gram tokenizer but we'll need to increase the default index-level setting called max_ngram_diff from 1 to (arbitrarily) 10 because we want to catch as many ngrams as is reasonable:
PUT tagindex
{
"settings": {
"index": {
"max_ngram_diff": 10
},
"analysis": {
"analyzer": {
"my_ngrams_analyzer": {
"tokenizer": "my_ngrams",
"filter": [ "lowercase" ]
}
},
"tokenizer": {
"my_ngrams": {
"type": "ngram",
"min_gram": 3,
"max_gram": 10,
"token_chars": [ "letter", "digit" ]
}
}
}
},
{ "mappings": ... } --> see below
}
- When your
tags
field is a list of keywords, it's simply not possible to aggregate on that field without resorting to theinclude
option which can be either exact matches or a regex (which you're already using). Now, we cannot guarantee exact matches but we also don't want to regex! So that's why we need to use a nested list which'll treat each tag separately.
Now, nested lists are expected to contain objects so
{
"tags": ["Race", "Racing", "Mountain Bike", "Horizontal"]
}
will need to be converted to
{
"tags": [
{ "tag": "Race" },
{ "tag": "Racing" },
{ "tag": "Mountain Bike" },
{ "tag": "Horizontal" }
]
}
After that we'll proceed with the multi field mapping, keeping the original tags intact but also adding a .tokenized
field to search on and a .keyword
field to aggregate on:
"index": { ... },
"analysis": { ... },
"mappings": {
"properties": {
"tags": {
"type": "nested",
"properties": {
"tag": {
"type": "text",
"fields": {
"tokenized": {
"type": "text",
"analyzer": "my_ngrams_analyzer"
},
"keyword": {
"type": "keyword"
}
}
}
}
}
}
}
We'll then add our adjusted tags docs:
POST tagindex/_doc
{"tags":[{"tag":"Race"},{"tag":"Racing"},{"tag":"Mountain Bike"},{"tag":"Horizontal"}]}
POST tagindex/_doc
{"tags":[{"tag":"Tracey Chapman"},{"tag":"Silverfish"},{"tag":"Blue"}]}
POST tagindex/_doc
{"tags":[{"tag":"Surfing"},{"tag":"Race"},{"tag":"Disgrace"}]}
and apply a nested filter terms aggregation:
GET tagindex/_search
{
"aggs": {
"topics_parent": {
"nested": {
"path": "tags"
},
"aggs": {
"topics": {
"filter": {
"term": {
"tags.tag.tokenized": "race"
}
},
"aggs": {
"topics": {
"terms": {
"field": "tags.tag.keyword",
"size": 100
}
}
}
}
}
}
},
"size": 0
}
yielding
{
...
"topics_parent" : {
...
"topics" : {
...
"topics" : {
...
"buckets" : [
{
"key" : "Race",
"doc_count" : 2
},
{
"key" : "Disgrace",
"doc_count" : 1
},
{
"key" : "Tracey Chapman",
"doc_count" : 1
}
]
}
}
}
}
Caveats
- in order for this to work, you'll have to reindex
- ngrams will increase the storage footprint -- depending on how many tags-per-doc you have, it may become a concern
- nested fields are internally treated as "separate documents" so this affects the disk space too
P.S.: This is an interesting use case. Let me know how the implementation went!
来源:https://stackoverflow.com/questions/65581838/how-to-correctly-query-inside-of-terms-aggregate-values-in-elasticsearch-using