Scipy Optimize is only returning x0, only completing one iteration

青春壹個敷衍的年華 提交于 2021-01-03 06:12:39

问题


I am using scipy optimize to get the minimum value on the following function:

def randomForest_b(a,b,c,d,e):
 return abs(rf_diff.predict([[a,b,c,d,e]]))

I eventually want to be able to get the optimal values of (a) and (b) given the arguments (c,d,e). However, just to learn how to work the optimize function, I am trying to get the optimal value of (a) given the other arguments. I have the following code:

res=optimize.minimize(randomForest_b, x0=45,args=(119.908500,65.517527,2.766103,29.509200), bounds=((45,65),))
print(res) 

And I have even tried:

optimize.fmin_slsqp(randomForest_b, x0=45,args=(119.908500,65.517527,2.766103,29.509200), bounds=((45,65),))

However, both of these just return the x0 value.

Optimization terminated successfully.    (Exit mode 0)
        Current function value: 1.5458542752157667
        Iterations: 1
        Function evaluations: 3
        Gradient evaluations: 1
array([ 45.])

The current function value is correct, however between all numbers within the bounds, the x0 does not return the minimum function value. I have the bounds set because the variable a can only be a number between 45 and 65. Am I missing something or doing something wrong? And if possible, how can I get optimal values of a and b?

Here is an example of the complete code I am using: from numpy import array import scipy.optimize as optimize from scipy.optimize import minimize

a=np.random.uniform(low=4.11, high=6.00, size=(50,))
b=np.random.uniform(low=50.11, high=55.99, size=(50,))
c=np.random.uniform(low=110.11, high=120.99, size=(50,))
d=np.random.uniform(low=50.11, high=60.00, size=(50,))
pv=np.random.uniform(low=50.11, high=60.00, size=(50,))

df=pd.DataFrame(a, columns=['a'])
df['b']=b
df['c']=c
df['d']=d
df['pv']=pv
df['difference']=df['pv']-df['d']

from sklearn.model_selection import train_test_split 
y=df.loc[:, 'difference']
x=df.iloc[:, [0,1,2,3]]
x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.25)

from sklearn.ensemble import RandomForestRegressor
rf_difference = RandomForestRegressor(n_estimators = 1000, oob_score=True, 
random_state = 0)
rf_difference.fit(x_train, y_train) 

def randomForest_b(a,b,c,d):
    return abs(rf_difference.predict([[a,b,c,d]]))

res=optimize.minimize(randomForest_b, 
x0=0,args=(51.714088,110.253656,54.582179), bounds=((0,6),))
print(res)

optimize.fmin_slsqp(randomForest_b, x0=0,args= 
(51.714088,110.253656,54.582179), 
bounds=((0,6),))

回答1:


The function you are trying to minimize is not smooth and has also several plateaus, this can be seen by plotting randomForest_b as a function of a:

a = np.linspace(0,6,500)
args = 51.714088,110.253656,54.582179
vrandomForest_b = np.vectorize(randomForest_b,excluded=[1,2,3])
y_values = vrandomForest_b(a, *args)

fig, ax = plt.subplots(figsize=(8,6))
ax.plot(a, y_values, label='randomForest_b')
ax.axvline(0, label='Your start value', color='g', ls='--')
ax.set(xlabel='a', ylabel='randomForest_b');
ax.legend()

For non-smooth functions like yours, gradient-based optimization techniques will fail almost certainly. In this case, the starting value of 0 is on a plateau with vanishing gradient, therefore the optimization finishes immediately after one iteration.

A solution would be to use non-gradient based optimization methods, for example stochastic minimization with scipy.optimize.differential_evolution. A caveat of these methods is that they usually require more function evaluations and can take longer to finish.

This optimization method is able to find the global minimum in the example case given in your question:

rslt = optimize.differential_evolution(vrandomForest_b,
                                       args=(51.714088,110.253656,54.582179), 
                                       bounds=[(0,6)])
print(rslt)

fig, ax = plt.subplots()
ax.plot(a, y_values, label='randomForest_b')
ax.axvline(rslt.x, label='Minimum', color='red', ls='--')
ax.legend()
 fun: 0.054257768073620746 
 message: 'Optimization terminated successfully.'
 nfev: 152
 nit: 9  success: True
 x: array([5.84335956])



来源:https://stackoverflow.com/questions/52742336/scipy-optimize-is-only-returning-x0-only-completing-one-iteration

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!