###haohaohao####揭秘认知图谱!从多跳阅读理解问答开始
【ACL 2019】揭秘认知图谱!从多跳阅读理解问答开始 Phoenix Cat 劝退人工智能新天坑 “机器的阅读理解与问答”一直以来被认为是“自然语言理解(NLU)”的核心问题之一,随着BERT等模型的兴起,单段落的简单阅读理解任务取得了重大突破;研究者将目光转向更能体现机器智能的“多跳”“复杂”情形。本篇论文介绍了基于认知中“双过程理论(dual process theory)”的CogQA模型,文章提出一种新颖的迭代框架:算法模拟认知学中人类的两个认知系统,并维护一张认知图谱(Cognitive Graph),系统一在文本中抽取与问题相关的实体名称并扩展节点和汇总语义向量,系统二利用图神经网络在认知图谱上进行推理计算。文章在HotpotQA全维基百科数据集上持续占据第一近三个月之久,直到文章在被ACL高分接收后公开。 假设你手边有一个维基百科的搜索引擎,可以用来获取实体对应的文本段落,那么如何来回答下面这个复杂的问题呢? “谁是某部在2003年取景于洛杉矶Quality cafe的电影的导演?” 很自然地,我们将会从例如Quality cafe这样的“相关实体”入手,通过维基百科查询相关介绍,并在其中讲到好莱坞电影的时候迅速定位到“Old School”“Gone in 60 Seconds”这两部电影,通过继续查询两部电影相关的介绍,我们找到他们的导演