Tensorflow in Scala reflection

喜你入骨 提交于 2020-11-29 19:29:13

问题


I am trying to get tensorflow for java to work on Scala. I am use the tensorflow java library without any wrapper for Scala.

At sbt I have:

If I run the HelloWord found here, it WORKS fine, with the Scala adaptations:

import org.tensorflow.Graph
import org.tensorflow.Session
import org.tensorflow.Tensor
import org.tensorflow.TensorFlow


val g = new Graph()
val value = "Hello from " + TensorFlow.version()
val t = Tensor.create(value.getBytes("UTF-8"))
// The Java API doesn't yet include convenience functions for adding operations.
g.opBuilder("Const", "MyConst").setAttr("dtype", t.dataType()).setAttr("value", t).build();

val s = new Session(g)
val output = s.runner().fetch("MyConst").run().get(0)

However, if I try to use Scala reflection to compile the function from a string, it DOES NOT WORK. Here is the snippet I used to run:

import scala.reflect.runtime.{universe => ru}
import scala.tools.reflect.ToolBox
val fnStr = """
    {() =>
      import org.tensorflow.Graph
      import org.tensorflow.Session
      import org.tensorflow.Tensor
      import org.tensorflow.TensorFlow

      val g = new Graph()
      val value = "Hello from " + TensorFlow.version()
      val t = Tensor.create(value.getBytes("UTF-8"))
      g.opBuilder("Const", "MyConst").setAttr("dtype", t.dataType()).setAttr("value", t).build();

      val s = new Session(g)

      s.runner().fetch("MyConst").run().get(0)
    }
    """
val mirror = ru.runtimeMirror(getClass.getClassLoader)
val tb = mirror.mkToolBox()
var t = tb.parse(fnStr)
val fn = tb.eval(t).asInstanceOf[() => Any]
// and finally, executing the function
fn()

Here simplified build.sbt to reproduce the error above:

lazy val commonSettings = Seq(
    scalaVersion := "2.12.10",

    libraryDependencies ++= {
      Seq(
                  // To support runtime compilation
        "org.scala-lang" % "scala-reflect" % scalaVersion.value,
        "org.scala-lang" % "scala-compiler" % scalaVersion.value,

        // for tensorflow4java
        "org.tensorflow" % "tensorflow" % "1.15.0",
        "org.tensorflow" % "proto" % "1.15.0",
        "org.tensorflow" % "libtensorflow_jni" % "1.15.0"

      )
    }
)

lazy val `test-proj` = project
  .in(file("."))
  .settings(commonSettings)

When running the above, for example with sbt console, I get the following error and stack trace:

java.lang.NoSuchMethodError: org.tensorflow.Session.runner()Lorg/tensorflow/Session$$Runner;
  at __wrapper$1$f093d26a3c504d4381a37ef78b6c3d54.__wrapper$1$f093d26a3c504d4381a37ef78b6c3d54$.$anonfun$wrapper$1(<no source file>:15)

Please ignore the memory-leaks that the previous code has given that no resources context (to close()) is used


回答1:


The thing is in this bug appearing in combination of reflective compilation and Scala-Java interop

https://github.com/scala/bug/issues/8956

Toolbox can't typecheck a value (s.runner()) of path-dependent type (s.Runner) if this type comes from Java non-static inner class. And Runner is exactly such class inside org.tensorflow.Session.

You can run the compiler manually (similarly to how Toolbox runs it)

import org.tensorflow.Tensor
import scala.reflect.internal.util.{AbstractFileClassLoader, BatchSourceFile}
import scala.reflect.io.{AbstractFile, VirtualDirectory}
import scala.reflect.runtime
import scala.reflect.runtime.universe
import scala.reflect.runtime.universe._
import scala.tools.nsc.{Global, Settings}

val code: String =
  """
    |import org.tensorflow.Graph
    |import org.tensorflow.Session
    |import org.tensorflow.Tensor
    |import org.tensorflow.TensorFlow
    |
    |object Main {
    |  def foo() = () => {
    |      val g = new Graph()
    |      val value = "Hello from " + TensorFlow.version()
    |      val t = Tensor.create(value.getBytes("UTF-8"))
    |      g.opBuilder("Const", "MyConst").setAttr("dtype", t.dataType()).setAttr("value", t).build();
    |
    |      val s = new Session(g)
    |
    |      s.runner().fetch("MyConst").run().get(0)
    |  }
    |}
""".stripMargin

val directory = new VirtualDirectory("(memory)", None)
val runtimeMirror = createRuntimeMirror(directory, runtime.currentMirror)
compileCode(code, List(), directory)
val tensor = runObjectMethod("Main", runtimeMirror, "foo").asInstanceOf[() => Tensor[_]]
tensor() // STRING tensor with shape []

def compileCode(code: String, classpathDirectories: List[AbstractFile], outputDirectory: AbstractFile): Unit = {
  val settings = new Settings
  classpathDirectories.foreach(dir => settings.classpath.prepend(dir.toString))
  settings.outputDirs.setSingleOutput(outputDirectory)
  settings.usejavacp.value = true
  val global = new Global(settings)
  (new global.Run).compileSources(List(new BatchSourceFile("(inline)", code)))
}

def runObjectMethod(objectName: String, runtimeMirror: Mirror, methodName: String, arguments: Any*): Any = {
  val objectSymbol = runtimeMirror.staticModule(objectName)
  val objectModuleMirror = runtimeMirror.reflectModule(objectSymbol)
  val objectInstance = objectModuleMirror.instance
  val objectType = objectSymbol.typeSignature
  val methodSymbol = objectType.decl(TermName(methodName)).asMethod
  val objectInstanceMirror = runtimeMirror.reflect(objectInstance)
  val methodMirror = objectInstanceMirror.reflectMethod(methodSymbol)
  methodMirror(arguments: _*)
}

def createRuntimeMirror(directory: AbstractFile, parentMirror: Mirror): Mirror = {
  val classLoader = new AbstractFileClassLoader(directory, parentMirror.classLoader)
  universe.runtimeMirror(classLoader)
}

dynamically parse json in flink map

Dynamic compilation of multiple Scala classes at runtime

How to eval code that uses InterfaceStability annotation (that fails with "illegal cyclic reference involving class InterfaceStability")?



来源:https://stackoverflow.com/questions/60783153/tensorflow-in-scala-reflection

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!