问题描述
给定一个 $n$次多项式 $F(x)$ 和一个 $m$ 次多项式 $G(x)$,请求出多项式 $Q(x)$,$R(x)$,满足以下条件:
- $Q(x)$ 次数为 $n-m$,$R(x)$ 次数小于 $m$
- $F(x) = Q(x) * G(x) + R(x)$
所有运算在模998244353意义下进行
详见洛谷 P4512
分析
具体来说,设多项式$A$为$n$次多项式,考虑一种操作$R$,使得
$\displaystyle A_R(x)=x^n A(\frac{1}{x})$
稍微想象一下,可以发现$A_R[i]=A[n-i]$($[i]$表示多项式的第$i$次系数)。
这个操作可以$O(n)$完成。
然后开始化式子。
$$F(x)=Q(x) * G(x)+R(x)$$
$$\displaystyle F(\frac{1}{x})=Q(\frac{1}{x}) * G(\frac{1}{x})+R(\frac{1}{x})$$
$$\displaystyle x^n F(\frac{1}{x})=x^{n-m} Q(\frac{1}{x}) * x^m G(\frac{1}{x})+x^{n-m+1} * x^{m-1} R(\frac{1}{x})$$
$$\displaystyle F_R(x)=Q_R(x)*G_R(x)+x^{n-m+1} * R_R(x)$$
$$\displaystyle F_R(x) \equiv Q_R(x)*G_R(x)\pmod {x^{n-m+1}}$$
$$\displaystyle Q_R(x) \equiv F_R(x)*G_R^{-1}(x)\pmod {x^{n-m+1}}$$
求一遍$G_R$的逆,然后就可以利用多项式乘法求出$Q$。然后
$$R(x)=F(x)-G(x)*Q(x)$$
直接计算即可。系数翻转可以用自带的 $reverse$ 函数,逆元最好迭代求解。
总的时间复杂度$O(nlogn)$。
代码:
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
const int N = 1<<20;
int read()
{
int x = 0, f = 1; char c = getchar();
while(c < '0' || c > '9') {if(c == '-') f = -1; c = getchar();}
while(c >= '0' && c <= '9') x = (x<<1) + (x<<3) + c - '0', c = getchar();
return x * f;
}
namespace Polynomial
{
const ll P = 998244353, g = 3, gi = 332748118;
static int rev[N];
int lim, bit;
ll add(ll a, ll b)
{
return (a += b) >= P ? a - P : a;
}
ll qpow(ll a, ll b)
{
ll prod = 1;
while(b)
{
if(b & 1) prod = prod * a % P;
a = a * a % P;
b >>= 1;
}
return (prod + P) % P;
}
void calrev() {
for(int i = 1; i < lim; i++)
rev[i] = (rev[i >> 1] >> 1) | ((i & 1) << (bit - 1));
}
void NTT(ll *A, int inv)
{
for(int i = 0; i < lim; i++)
if(i < rev[i]) swap(A[i], A[rev[i]]);
for(int mid = 1; mid < lim; mid <<= 1)
{
ll tmp = qpow(inv == 1 ? g : gi, (P - 1) / (mid << 1));
for(int j = 0; j < lim; j += (mid << 1))
{
ll omega = 1;
for(int k = 0; k < mid; k++, omega = (omega * tmp) % P) {
int x = A[j + k], y = omega * A[j + k + mid] % P;
A[j + k] = (x + y) % P;
A[j + k + mid] = (x - y + P) % P;
}
}
}
if(inv == 1) return;
int invn = qpow(lim, P - 2);
for(int i = 0; i < lim; i++)
A[i] = A[i] * invn % P;
}
static ll x[N], y[N];
void mul(ll *a, ll *b)
{
memset(x, 0, sizeof x);
memset(y, 0, sizeof y);
for(int i = 0; i < (lim >> 1); i++)
x[i] = a[i], y[i] = b[i];
NTT(x, 1), NTT(y, 1);
for(int i = 0; i < lim; i++)
x[i] = x[i] * y[i] % P;
NTT(x, -1);
for(int i = 0; i < lim; i++)
a[i] = x[i];
}
static ll c[2][N];
void Inv(ll *a, int n)
{
int p = 0;
memset(c, 0, sizeof c);
c[0][0] = qpow(a[0], P - 2);
lim = 2, bit = 1;
while(lim <= (n << 1))
{
lim <<= 1, bit++;
calrev();
p ^= 1;
memset(c[p], 0, sizeof c[p]);
for(int i = 0; i <= lim; i++)
c[p][i] = add(c[p^1][i], c[p^1][i]);
mul(c[p^1], c[p^1]);
mul(c[p^1], a);
for(int i = 0; i <= lim; i++)
c[p][i] = add(c[p][i], P - c[p^1][i]);
}
for(int i = 0; i < lim; i++)
a[i] = c[p][i];
}
}
using namespace Polynomial;
int n, m;
ll F[N], G[N], Q[N], R[N], Gr[N];
int main()
{
n = read(), m = read();
for(int i = 0; i <= n; i++)
F[i] = read(), Q[n - i] = F[i];
for(int i = 0; i <= m; i++)
G[i] = read(), Gr[m - i] = G[i];
for(int i = n - m + 2; i <= m; i++)
Gr[i] = 0;
Inv(Gr, n - m + 1); //Gr=Gr的逆
mul(Q, Gr); //Q=Q*Gr
reverse(Q, Q + n - m + 1); //Q=reverse(Q)
for(int i = n - m + 1; i <= n; i++)
Q[i] = 0;
for(int i = 0; i <= n - m; i++)
printf("%lld ", Q[i]);
printf("\n");
lim = 1, bit = 0;
while(lim <= (n << 2))
lim <<= 1, bit++;
calrev();
mul(Q, G);
for(int i = 0; i < m; i++)
printf("%lld ", add(F[i], P - Q[i])); //R=F - Q*G
return 0;
}
代码转载自:https://www.luogu.org/blog/AKIOIorz/p4512-mu-ban-duo-xiang-shi-chu-fa
来源:oschina
链接:https://my.oschina.net/u/4388412/blog/3452652