本文是王家林大咖清华大学新书《企业级AI技术内幕:深度学习框架开发+机器学习案例+Alluxio解密》第2.1章节的内容,清华大学出版社将于9月份出版新书。
盘古人工智能框架引言
2017年3月21日,王家林大咖在硅谷,利用三个月的时间,于2017年6月22日实现了盘古人工智能框架,在该框架中实现了基本的ANN(Artificial Neural Network)和CNN(Convolutional Neural Network),那时还没实现RNN(Recurrent neural Network),但是实现了另外两个特别重要的算法,一个是自动编码(AutoEncoders),还有一个是非监督学习玻尔兹曼机算法(Boltzmann_ Machines),二者都跟推荐系统相关。对于深度学习中的算法,神经网络算法是必须掌握的,CNN、RNN等都是基于神经网络算法延伸出来的,包括自动编码算法,也是基于神经网络的算法延伸出来的。自动编码算法、玻尔兹曼机算法在实际中可用于推荐系统,在Facebook、谷歌、亚马逊的各种应用场景都可以看见推荐系统的身影;深度学习在图片识别、声音识别中可能暂时不那么重要。从2017年6月开始,用了将近10个月的时间,作者在自己开发的人工智能框架中试验了上述算法,这是做人工智能研究的核心能力之一。
研究TensorFlow
来源:oschina
链接:https://my.oschina.net/u/4316091/blog/4489881