问题
I am running this code for a project I am doing for fun to find patterns in Disneyland wait times:
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
df_pirates_all = pd.read_csv(
"https://cdn.touringplans.com/datasets/pirates_of_caribbean_dlr.csv",usecols=['date','datetime','SPOSTMIN'],
parse_dates=['date', 'datetime'],
)
df_pirates_all['ride'] = 'pirates'
df_pirates_all['open'] = ~((df_pirates_all['SPOSTMIN'] == -999))
df_pirates = df_pirates_all.set_index('datetime').sort_index()
df_pirates = df_pirates.loc['2017-01-01 06:00':'2017-02-01 00:00']
df_pirates = df_pirates.resample('15Min').ffill()
df_star_tours_all = pd.read_csv(
"https://cdn.touringplans.com/datasets/star_tours_dlr.csv", usecols=['date','datetime','SPOSTMIN'],
parse_dates=['date', 'datetime']
)
df_star_tours_all['ride'] = 'star_tours'
df_star_tours_all['open'] = ~((df_star_tours_all['SPOSTMIN'] == -999))
df_star_tours = df_star_tours_all.set_index('datetime').sort_index()
df_star_tours = df_star_tours.loc['2017-01-01 06:00':'2017-02-01 00:00']
df_star_tours = df_star_tours.resample('15Min').ffill()
df_space_all = pd.read_csv(
"https://cdn.touringplans.com/datasets/space_mountain_dlr.csv", usecols=['date','datetime','SPOSTMIN'],
parse_dates=['date', 'datetime']
)
df_space_all['ride'] = 'space'
df_space_all['open'] = ~((df_space_all['SPOSTMIN'] == -999))
df_space = df_space_all.set_index('datetime').sort_index()
df_space = df_space.loc['2017-01-01 06:00':'2017-02-01 00:00']
df_space = df_space.resample('15Min').ffill()
all_data = pd.concat([df_pirates, df_star_tours, df_space]).reset_index()
all_data = (
all_data
# Drop any "NaN" values in the column 'ride'
.dropna(subset=['ride', ])
# Make datetime and ride a "Multi-Index"
.set_index(['datetime', 'ride'])
# Choose the column 'SPOSTMIN'
['SPOSTMIN']
# Take the last index ('ride') and rotate to become column names
.unstack()
)
# print (all_data)
for month, group in all_data.groupby(pd.Grouper(freq='M')):
with pd.ExcelWriter(f'{month}.xlsx') as writer:
for day, dfsub in group.groupby(pd.Grouper(freq='D')):
dfsub.to_excel(writer, sheet_name='day')
However I am running into this error
FileCreateError: [Errno 22] Invalid argument: '2017-01-31 00:00:00.xlsx'
and it is connected to the dfsub.to_excel line.
It mostly got fixed by the comments, however, only one sheet is appearing and it only has the last day of data (1-31-17) instead of individual sheets for 1-1-17,1-2-17,etc.
回答1:
For the first error based on the code you don’t care about the specific date + time so do this:
with pd.ExcelWriter(f'{month.date()}.xlsx'):
This will convert the datetime object to a date object
Your second error is saying you are attempting to make a column that isn’t all unique an index which pandas won’t allow.
Maybe there are field you can combine or use another one?
回答2:
What got it fixed was changing the code from
for month, group in all_data.groupby(pd.Grouper(freq='M')):
with pd.ExcelWriter(f'{month}.xlsx') as writer:
for day, dfsub in group.groupby(pd.Grouper(freq='D')):
dfsub.to_excel(writer, sheet_name='day')
to
for month, group in all_data.groupby(pd.Grouper(freq='M')):
with pd.ExcelWriter(f'{month.strftime("%B %Y")}.xlsx') as writer:
for day, dfsub in group.groupby(pd.Grouper(freq='D')):
dfsub.to_excel(writer,sheet_name=str(day.date()))
with the suggestions that were made.
来源:https://stackoverflow.com/questions/62807176/what-is-the-problem-with-the-pandas-to-csv-in-my-code