问题
I read in a *.csv
file using tf.data.TextLineDataset
and apply map
on it:
dataset = tf.data.TextLineDataset(os.path.join(data_dir, subset, 'label.txt'))
dataset = dataset.map(lambda value: parse_record_fn(value, is_training),
num_parallel_calls=num_parallel_calls)
Parse function parse_record_fn
looks like this:
def parse_record(raw_record, is_training):
default_record = ["./", -1]
filename, label = tf.decode_csv([raw_record], default_record)
# do something
return image, label
But there raise an ValueError
at tf.decode_csv
in parse function:
ValueError: Shape must be rank 1 but is rank 0 for 'DecodeCSV' (op: 'DecodeCSV') with input shapes: [1], [], [].
My *.csv
file example:
/data/1.png, 5
/data/2.png, 7
Question:
- Where goes wrong?
- What does
shapes: [1], [], []
mean?
Reproduce
This error can be reproduced in this code:
import tensorflow as tf
import os
def parse_record(raw_record, is_training):
default_record = ["./", -1]
filename, label = tf.decode_csv([raw_record], default_record)
# do something
return image, label
with tf.Session() as sess:
csv_path = './labels.txt'
dataset = tf.data.TextLineDataset(csv_path)
dataset = dataset.map(lambda value: parse_record(value, True))
sess.run(dataset)
回答1:
Looking at the documentation of tf.decode_csv, it says about the default records:
record_defaults: A list of Tensor objects with specific types. Acceptable types are float32, float64, int32, int64, string. One tensor per column of the input record, with either a scalar default value for that column or empty if the column is required.
I believe the error you are getting originates from how you define the tensor default_record
. Your default_record
certainly is a list of tensor objects (or objects convertible to tensors), but I think the error message is telling that they should be rank-1 tensors, not rank-0 tensors as in your case.
You can fix the issue by making the default records rank 1 tensors. See the following toy example:
import tensorflow as tf
my_line = 'filename.png, 10'
default_record_1 = [['./'], [-1]] # do this!
default_record_2 = ['./', -1] # this is what you do now
decoded_1 = tf.decode_csv(my_line, default_record_1)
with tf.Session() as sess:
d = sess.run(decoded_1)
print(d)
# This will cause an error
decoded_2 = tf.decode_csv(my_line, default_record_2)
The error produced on the last line is familiar:
ValueError: Shape must be rank 1 but is rank 0 for 'DecodeCSV_1' (op: 'DecodeCSV') with input shapes: [], [], [].
In the message, the input shapes, the three brackets []
, refer to the shapes of the input arguments records
, record_defaults
, and field_delim
of tf.decode_csv
. In your case the first of these shapes is [1]
since you input [raw_record]
. I agree that the message for this case is not very informative...
来源:https://stackoverflow.com/questions/49473963/tensorflow-decode-csv-shape-error