问题:
I have taken Problem #12 from Project Euler as a programming exercise and to compare my (surely not optimal) implementations in C, Python, Erlang and Haskell. 我将Project Euler中的问题#12作为编程练习并比较了我在C,Python,Erlang和Haskell中的(当然不是最优的)实现。 In order to get some higher execution times, I search for the first triangle number with more than 1000 divisors instead of 500 as stated in the original problem. 为了获得更高的执行时间,我搜索第一个三角形数字,其中有超过1000个除数而不是原始问题中所述的500。
The result is the following: 结果如下:
C: C:
lorenzo@enzo:~/erlang$ gcc -lm -o euler12.bin euler12.c
lorenzo@enzo:~/erlang$ time ./euler12.bin
842161320
real 0m11.074s
user 0m11.070s
sys 0m0.000s
Python: 蟒蛇:
lorenzo@enzo:~/erlang$ time ./euler12.py
842161320
real 1m16.632s
user 1m16.370s
sys 0m0.250s
Python with PyPy: Python与PyPy:
lorenzo@enzo:~/Downloads/pypy-c-jit-43780-b590cf6de419-linux64/bin$ time ./pypy /home/lorenzo/erlang/euler12.py
842161320
real 0m13.082s
user 0m13.050s
sys 0m0.020s
Erlang: 二郎:
lorenzo@enzo:~/erlang$ erlc euler12.erl
lorenzo@enzo:~/erlang$ time erl -s euler12 solve
Erlang R13B03 (erts-5.7.4) [source] [64-bit] [smp:4:4] [rq:4] [async-threads:0] [hipe] [kernel-poll:false]
Eshell V5.7.4 (abort with ^G)
1> 842161320
real 0m48.259s
user 0m48.070s
sys 0m0.020s
Haskell: 哈斯克尔:
lorenzo@enzo:~/erlang$ ghc euler12.hs -o euler12.hsx
[1 of 1] Compiling Main ( euler12.hs, euler12.o )
Linking euler12.hsx ...
lorenzo@enzo:~/erlang$ time ./euler12.hsx
842161320
real 2m37.326s
user 2m37.240s
sys 0m0.080s
Summary: 摘要:
- C: 100% C:100%
- Python: 692% (118% with PyPy) Python:692%(使用PyPy时为118%)
- Erlang: 436% (135% thanks to RichardC) Erlang:436%(135%归功于RichardC)
- Haskell: 1421% 哈斯克尔:1421%
I suppose that C has a big advantage as it uses long for the calculations and not arbitrary length integers as the other three. 我认为C有一个很大的优势,因为它使用long进行计算而不是任意长度整数作为其他三个。 Also it doesn't need to load a runtime first (Do the others?). 此外,它不需要首先加载运行时(其他人?)。
Question 1: Do Erlang, Python and Haskell lose speed due to using arbitrary length integers or don't they as long as the values are less than MAXINT
? 问题1: Erlang,Python和Haskell是否由于使用任意长度整数而失去速度,或者只要值小于MAXINT
就不会失败?
Question 2: Why is Haskell so slow? 问题2:为什么Haskell这么慢? Is there a compiler flag that turns off the brakes or is it my implementation? 是否有编译器标志关闭刹车或是我的实施? (The latter is quite probable as Haskell is a book with seven seals to me.) (后者非常可能,因为Haskell是一本带有七个印章的书。)
Question 3: Can you offer me some hints how to optimize these implementations without changing the way I determine the factors? 问题3:您能否提供一些提示,如何优化这些实现而不改变我确定因素的方式? Optimization in any way: nicer, faster, more "native" to the language. 以任何方式进行优化:更好,更快,更“本地”的语言。
EDIT: 编辑:
Question 4: Do my functional implementations permit LCO (last call optimization, aka tail recursion elimination) and hence avoid adding unnecessary frames onto the call stack? 问题4:我的功能实现是否允许LCO(最后调用优化,也就是尾递归消除),从而避免在调用堆栈中添加不必要的帧?
I really tried to implement the same algorithm as similar as possible in the four languages, although I have to admit that my Haskell and Erlang knowledge is very limited. 我真的试图在四种语言中尽可能地实现相同的算法,尽管我必须承认我的Haskell和Erlang知识非常有限。
Source codes used: 使用的源代码:
#include <stdio.h>
#include <math.h>
int factorCount (long n)
{
double square = sqrt (n);
int isquare = (int) square;
int count = isquare == square ? -1 : 0;
long candidate;
for (candidate = 1; candidate <= isquare; candidate ++)
if (0 == n % candidate) count += 2;
return count;
}
int main ()
{
long triangle = 1;
int index = 1;
while (factorCount (triangle) < 1001)
{
index ++;
triangle += index;
}
printf ("%ld\n", triangle);
}
#! /usr/bin/env python3.2
import math
def factorCount (n):
square = math.sqrt (n)
isquare = int (square)
count = -1 if isquare == square else 0
for candidate in range (1, isquare + 1):
if not n % candidate: count += 2
return count
triangle = 1
index = 1
while factorCount (triangle) < 1001:
index += 1
triangle += index
print (triangle)
-module (euler12).
-compile (export_all).
factorCount (Number) -> factorCount (Number, math:sqrt (Number), 1, 0).
factorCount (_, Sqrt, Candidate, Count) when Candidate > Sqrt -> Count;
factorCount (_, Sqrt, Candidate, Count) when Candidate == Sqrt -> Count + 1;
factorCount (Number, Sqrt, Candidate, Count) ->
case Number rem Candidate of
0 -> factorCount (Number, Sqrt, Candidate + 1, Count + 2);
_ -> factorCount (Number, Sqrt, Candidate + 1, Count)
end.
nextTriangle (Index, Triangle) ->
Count = factorCount (Triangle),
if
Count > 1000 -> Triangle;
true -> nextTriangle (Index + 1, Triangle + Index + 1)
end.
solve () ->
io:format ("~p~n", [nextTriangle (1, 1) ] ),
halt (0).
factorCount number = factorCount' number isquare 1 0 - (fromEnum $ square == fromIntegral isquare)
where square = sqrt $ fromIntegral number
isquare = floor square
factorCount' number sqrt candidate count
| fromIntegral candidate > sqrt = count
| number `mod` candidate == 0 = factorCount' number sqrt (candidate + 1) (count + 2)
| otherwise = factorCount' number sqrt (candidate + 1) count
nextTriangle index triangle
| factorCount triangle > 1000 = triangle
| otherwise = nextTriangle (index + 1) (triangle + index + 1)
main = print $ nextTriangle 1 1
解决方案:
参考一: https://stackoom.com/question/TDku/与Project-Euler的速度比较-C-vs-Python-vs-Erlang-vs-Haskell参考二: https://oldbug.net/q/TDku/Speed-comparison-with-Project-Euler-C-vs-Python-vs-Erlang-vs-Haskell
来源:oschina
链接:https://my.oschina.net/u/4438370/blog/4357913