加速Python列表和字典,让你代码更加高效

北城以北 提交于 2020-07-28 01:51:54

今天,我们将讨论Python中的优化技术。在本文中,您将了解如何通过避免在列表和字典中进行重新计算来加快代码的速度。

我们先编写一个装饰器函数来计算函数的执行时间,方便测验不同代码的速度:

import functools
import time

def timeit(func):
    @functools.wraps(func)
    def newfunc(*args, **kwargs):
        startTime = time.time()
        func(*args, **kwargs)
        elapsedTime = time.time() - startTime
        print('function - {}, took {} ms to complete'.format(func.__name__, int(elapsedTime * 1000)))
    return newfunc

避免在列表中重新评估

在循环内

代码:

@timeit
def append_inside_loop(limit):
    nums = []
    for num in limit:
        nums.append(num)

append_inside_loop(list(range(1, 9999999)))

在上面的函数中.append每次通过循环重新计算的函数引用。执行后,上述函数所花费的总时间:

o/p - function - append_inside_loop, took 529 ms to complete

在循环外

代码:

@timeit
def append_outside_loop(limit):
    nums = []
    append = nums.append
    for num in limit:
        append(num)

append_outside_loop(list(range(1, 9999999)))

在上面的函数中,我们对nums.append在循环外部估值,并在循环内部使用append为变量。总时间:

o/p - function - append_outside_loop, took 328 ms to complete

如您所见,当我们在​for循环外部追加为一个本地变量,这将花费更少的时间,可以将代码加速201 ms。​

避免在字典中重新求值

在循环内部

代码:

@timeit
def inside_evaluation(limit):
    data = {}
    for num in limit:
        data[num] = data.get(num, 0) + 1

inside_evaluation(list(range(1, 9999999)))

上述函数所花费的总时间:

o/p - function - inside_evaluation, took 1400 ms to complete

在循环外

代码:

@timeit
def outside_evaluation(limit):
    data = {}
    get = data.get
    for num in limit:
        data[num] = get(num, 0) + 1


outside_evaluation(list(range(1, 9999999)))

上述函数所花费的总时间:

o/p - function - outside_evaluation, took 1189 ms to complete

如你所见,我们这里的代码速度提高了211毫秒。

英文原文:

https://dev.to/sharmapacific/speedup-python-list-and-dictionary-12

本文仅供学习之用,版权归原作者所有,如有侵权请联系删除。

在学习Python的道路上肯定会遇见困难,别慌,我这里有一套学习资料,包含40+本电子书,800+个教学视频,涉及Python基础、爬虫、框架、数据分析、机器学习等,不怕你学不会! https://shimo.im/docs/JWCghr8prjCVCxxK/ 《Python学习资料》

关注公众号【Python圈子】,优质文章每日送达。

标签
易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!