Pytorch Convolutional Autoencoders

烈酒焚心 提交于 2020-07-09 02:56:27

问题


How one construct decoder part of convolutional autoencoder? Suppose I have this

(input -> conv2d -> maxpool2d -> maxunpool2d -> convTranspose2d -> output):

# CIFAR images shape = 3 x 32 x 32

class ConvDAE(nn.Module):
    def __init__(self):
        super().__init__()

        # input: batch x 3 x 32 x 32 -> output: batch x 16 x 16 x 16
        self.encoder = nn.Sequential(
            nn.Conv2d(3, 16, 3, stride=1, padding=1), # batch x 16 x 32 x 32
            nn.ReLU(),
            nn.BatchNorm2d(16),
            nn.MaxPool2d(2, stride=2) # batch x 16 x 16 x 16
        )

        # input: batch x 16 x 16 x 16 -> output: batch x 3 x 32 x 32
        self.decoder = nn.Sequential(
            # this line does not work
            # nn.MaxUnpool2d(2, stride=2, padding=0), # batch x 16 x 32 x 32
            nn.ConvTranspose2d(16, 16, 3, stride=2, padding=1, output_padding=1), # batch x 16 x 32 x 32
            nn.ReLU(),
            nn.BatchNorm2d(16),
            nn.ConvTranspose2d(16, 3, 3, stride=1, padding=1, output_padding=0), # batch x 3 x 32 x 32
            nn.ReLU()
        )

    def forward(self, x):
        print(x.size())
        out = self.encoder(x)
        print(out.size())
        out = self.decoder(out)
        print(out.size())
        return out

Pytorch specific question: why can't I use MaxUnpool2d in decoder part. This gives me the following error:

TypeError: forward() missing 1 required positional argument: 'indices'

And the conceptual question: Shouldn't we do in decoder inverse of whatever we did in encoder? I saw some implementations and it seems they only care about the dimensions of input and output of decoder. Here and here are some examples.


回答1:


For the torch part of the question, unpool modules have as a required positional argument the indices returned from the pooling modules which will be returned with return_indices=True. So you could do

class ConvDAE(nn.Module):
    def __init__(self):
        super().__init__()

        # input: batch x 3 x 32 x 32 -> output: batch x 16 x 16 x 16
        self.encoder = nn.Sequential(
            nn.Conv2d(3, 16, 3, stride=1, padding=1), # batch x 16 x 32 x 32
            nn.ReLU(),
            nn.BatchNorm2d(16),
            nn.MaxPool2d(2, stride=2, return_indices=True)
        )

        self.unpool = nn.MaxUnpool2d(2, stride=2, padding=0)

        self.decoder = nn.Sequential( 
            nn.ConvTranspose2d(16, 16, 3, stride=2, padding=1, output_padding=1), 
            nn.ReLU(),
            nn.BatchNorm2d(16),
            nn.ConvTranspose2d(16, 3, 3, stride=1, padding=1, output_padding=0), 
            nn.ReLU()
        )

    def forward(self, x):
        print(x.size())
        out, indices = self.encoder(x)
        out = self.unpool(out, indices)
        out = self.decoder(out)
        print(out.size())
        return out

As for the general part of the question, I don't think state of the art is to use a symmetric decoder part, as it has been shown that devonvolution/transposed convolution produces checkerboard effects and many approaches tend to use upsampling modules instead. You will find more info faster through PyTorch channels.



来源:https://stackoverflow.com/questions/53858626/pytorch-convolutional-autoencoders

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!