问题
I encountered a problem. I try to query this document to obtain the sum the amount and group by the LOC identifier that is outside the "COL" array.
{
"_id" : ObjectId("57506d74c469888f0d631be6"),
"LOC" : "User001",
"COL" : [
{
"date" : "25/03/2016",
"number" : "Folio009",
"amount" : 100
},
{
"date" : "25/04/2016",
"number" : "Folio010",
"amount" : 100
}
] }
This command works in mongo but I cannot make it work in Python with the Pymongo package:
Mongo query (working)
db.perfiles.aggregate({"$unwind": "$COL"},
{ "$group": { _id: "$LOC", "sum" : {"$sum" : "$COL.amount" }}})
Pymongo (not working)
from pymongo import MongoClient
client = MongoClient()
db = client['temporal']
docs = db.perfiles
pipeline = [{"$unwind": "$COL"},
{"$group": {"_id": "$LOC", "count": {"$sum": "$COL.amount"}}}
]
list(db.docs.aggregate(pipeline))
Any suggestion to query this same query but in Pymongo? Thanks!
回答1:
I assume you have a valid connection to MongoDB in Python.
The following code snippet will return a MongoDB cursor in result.
pipeline = [
{"$unwind": "$COL"},
{"$group": {"_id": "$LOC", "sum": {"$sum": "$COL.amount"}}}
]
cursor = collection.aggregate(pipeline)
Now you can convert cursor
to list
result = list(cursor)
and if you print result's value, you'll get exactly the same result as in your Shell query.
[{u'sum': 200.0, u'_id': u'User001'}]
Update:
I see that you are calling the aggregate
function in python code as db.docs.aggregate(pipeline)
.
You need to call it as docs.aggregate...
without db
. See example above.
回答2:
MongoDB Enterprise > db.test.aggregate([{$match:{name:'prasad'}},{$group : {_id : "$name", age : {$min : "$age"}}}]);
{ "_id" : "prasad", "age" : "20" }
MongoDB Enterprise > db.test.find()
{ "_id" : ObjectId("5890543bce1477899c6f05e8"), "name" : "prasad", "age" : "22" }
{ "_id" : ObjectId("5890543fce1477899c6f05e9"), "name" : "prasad", "age" : "21" }
{ "_id" : ObjectId("58905443ce1477899c6f05ea"), "name" : "prasad", "age" : "20" }
{ "_id" : ObjectId("5890544bce1477899c6f05eb"), "name" : "durga", "age" : "20" }
{ "_id" : ObjectId("58905451ce1477899c6f05ec"), "name" : "durga", "age" : "21" }
{ "_id" : ObjectId("58905454ce1477899c6f05ed"), "name" : "durga", "age" : "22" }
MongoDB Enterprise >
############code
import pymongo
from pymongo import MongoClient
client=MongoClient("localhost:27017")
db=client.prasad #####prasad is dbname, test is collection name
nameVar='prasad'
aggregation_string=[{"$match":{"name":nameVar}},{"$group" : {"_id" : "$name", "age" : {"$min" : "$age"}}}]
x=db.test.aggregate(aggregation_string)
print x
for r in x:
min_age=r.items()[0]
print(min_age[1]) #######output: 20
回答3:
you are in a right track but add one more statement it will be fine.
from pymongo import MongoClient
client = MongoClient()
db = client['temporal']
docs = db.perfiles
pipeline = [{"$unwind": "$COL"},
{"$group": {"_id": "$LOC", "count": {"$sum": "$COL.amount"}}}
]
result = list(db.docs.aggregate(pipeline))
for i in result:
sum += i['sum']
print(sum)
来源:https://stackoverflow.com/questions/38133529/aggregate-query-in-mongo-works-does-not-in-pymongo