问题
The scipy.fftpack.rfft
function returns the DFT as a vector of floats, alternating between the real and complex part. This means to multiply to DFTs together (for convolution) I will have to do the complex multiplication "manually" which seems quite tricky. This must be something people do often - I presume/hope there is a simple trick to do this efficiently that I haven't spotted?
Basically I want to fix this code so that both methods give the same answer:
import numpy as np
import scipy.fftpack as sfft
X = np.random.normal(size = 2000)
Y = np.random.normal(size = 2000)
NZ = np.fft.irfft(np.fft.rfft(Y) * np.fft.rfft(X))
SZ = sfft.irfft(sfft.rfft(Y) * sfft.rfft(X)) # This multiplication is wrong
NZ
array([-43.23961083, 53.62608086, 17.92013729, ..., -16.57605207,
8.19605764, 5.23929023])
SZ
array([-19.90115323, 16.98680347, -8.16608202, ..., -47.01643274,
-3.50572376, 58.1961597 ])
N.B. I am aware that fftpack contains a convolve
function, but I only need to fft one half of the transform - my filter can be fft'd once in advance and then used over and over again.
回答1:
You don't have to flip back to np.float64
and hstack
. You can create an empty destination array, the same shape as sfft.rfft(Y)
and sfft.rfft(X)
, then create a np.complex128
view of it and fill this view with the result of the multiplication. This will automatically fill the destination array as wanted.
If I retake your example :
import numpy as np
import scipy.fftpack as sfft
X = np.random.normal(size = 2000)
Y = np.random.normal(size = 2000)
Xf = np.fft.rfft(X)
Xf_cpx = Xf[1:-1].view(np.complex128)
Yf = np.fft.rfft(Y)
Yf_cpx = Yf[1:-1].view(np.complex128)
Zf = np.empty(X.shape)
Zf_cpx = Zf[1:-1].view(np.complex128)
Zf[0] = Xf[0]*Yf[0]
# the [...] is important to use the view as a reference to Zf and not overwrite it
Zf_cpx[...] = Xf_cpx * Yf_cpx
Zf[-1] = Xf[-1]*Yf[-1]
Z = sfft.irfft.irfft(Zf)
and that's it! You can use a simple if statement if you want your code to be more general and handle odd lengths as explained in Jaime's answer. Here is a function that does what you want:
def rfft_mult(a,b):
"""Multiplies two outputs of scipy.fftpack.rfft"""
assert a.shape == b.shape
c = np.empty( a.shape )
c[...,0] = a[...,0]*b[...,0]
# To comply with the rfft support of multi dimensional arrays
ar = a.reshape(-1,a.shape[-1])
br = b.reshape(-1,b.shape[-1])
cr = c.reshape(-1,c.shape[-1])
# Note that we cannot use ellipses to achieve that because of
# the way `view` work. If there are many dimensions, one should
# consider to manually perform the complex multiplication with slices.
if c.shape[-1] & 0x1: # if odd
for i in range(len(ar)):
ac = ar[i,1:].view(np.complex128)
bc = br[i,1:].view(np.complex128)
cc = cr[i,1:].view(np.complex128)
cc[...] = ac*bc
else:
for i in range(len(ar)):
ac = ar[i,1:-1].view(np.complex128)
bc = br[i,1:-1].view(np.complex128)
cc = cr[i,1:-1].view(np.complex128)
cc[...] = ac*bc
c[...,-1] = a[...,-1]*b[...,-1]
return c
回答2:
You can take a view of a slice of your return array, e.g.:
>>> scipy.fftpack.fft(np.arange(8))
array([ 28.+0.j , -4.+9.65685425j, -4.+4.j ,
-4.+1.65685425j, -4.+0.j , -4.-1.65685425j,
-4.-4.j , -4.-9.65685425j])
>>> a = scipy.fftpack.rfft(np.arange(8))
>>> a
array([ 28. , -4. , 9.65685425, -4. ,
4. , -4. , 1.65685425, -4. ])
>>> a.dtype
dtype('float64')
>>> a[1:-1].view(np.complex128) # First and last entries are real
array([-4.+9.65685425j, -4.+4.j , -4.+1.65685425j])
You will need to handle even or odd sized FFTs differently:
>>> scipy.fftpack.fft(np.arange(7))
array([ 21.0+0.j , -3.5+7.26782489j, -3.5+2.79115686j,
-3.5+0.79885216j, -3.5-0.79885216j, -3.5-2.79115686j,
-3.5-7.26782489j])
>>> a = scipy.fftpack.rfft(np.arange(7))
>>> a
array([ 21. , -3.5 , 7.26782489, -3.5 ,
2.79115686, -3.5 , 0.79885216])
>>> a.dtype
dtype('float64')
>>> a[1:].view(np.complex128)
array([-3.5+7.26782489j, -3.5+2.79115686j, -3.5+0.79885216j])
来源:https://stackoverflow.com/questions/18537184/how-should-i-multiply-scipy-fftpack-output-vectors-together