is there no option for step size in pandas.DataFrame.rolling? is there another function that will do this for me?

為{幸葍}努か 提交于 2020-05-31 06:25:40

问题


In R you can compute a rolling mean with a specified window that can shift by a specified amount each time.

However maybe I just haven't found it anywhere but it doesn't seem like you can do it in pandas or some other python library?

Does anyone know of a way around this. I'll give you an example of what I mean:

Here we have half-monthly data, and I am computing the two month moving average, that shifts each month.

So in R I would do something like: two_month__movavg=rollapply(mydata,4,mean,by = 2,na.pad = FALSE) Is there no equivalent in Python?

EDIT1:

DATE  A DEMAND   ...     AA DEMAND  A Price
    0  2006/01/01 00:30:00  8013.27833   ...     5657.67500    20.03
    1  2006/01/01 01:00:00  7726.89167   ...     5460.39500    18.66
    2  2006/01/01 01:30:00  7372.85833   ...     5766.02500    20.38
    3  2006/01/01 02:00:00  7071.83333   ...     5503.25167    18.59
    4  2006/01/01 02:30:00  6865.44000   ...     5214.01500    17.53

回答1:


You can using rolling again, just need a little bit work with you assign index

Here by = 2

by = 2

df.loc[df.index[np.arange(len(df))%by==1],'New']=df.Price.rolling(window=4).mean()
df
    Price    New
0      63    NaN
1      92    NaN
2      92    NaN
3       5  63.00
4      90    NaN
5       3  47.50
6      81    NaN
7      98  68.00
8     100    NaN
9      58  84.25
10     38    NaN
11     15  52.75
12     75    NaN
13     19  36.75



回答2:


Now this is a bit of overkill for a 1D array of data, but you can simplify it and pull out what you need. Since pandas can rely on numpy, you might want to check to see how their rolling/strided function if implemented. Results for 20 sequential numbers. A 7 day window, striding/sliding by 2

    z = np.arange(20)
    z   #array([ 0,  1,  2,  3,  4,  5,  6,  7,  8,  9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19])
    s = stride(z, (7,), (2,))

np.mean(s, axis=1)  # array([ 3.,  5.,  7.,  9., 11., 13., 15.])

Here is the code I use without the major portion of the documentation. It is derived from many implementations of strided function in numpy that can be found on this site. There are variants and incarnation, this is just another.

def stride(a, win=(3, 3), stepby=(1, 1)):
    """Provide a 2D sliding/moving view of an array.
    There is no edge correction for outputs. Use the `pad_` function first."""
    err = """Array shape, window and/or step size error.
    Use win=(3,) with stepby=(1,) for 1D array
    or win=(3,3) with stepby=(1,1) for 2D array
    or win=(1,3,3) with stepby=(1,1,1) for 3D
    ----    a.ndim != len(win) != len(stepby) ----
    """
    from numpy.lib.stride_tricks import as_strided
    a_ndim = a.ndim
    if isinstance(win, int):
        win = (win,) * a_ndim
    if isinstance(stepby, int):
        stepby = (stepby,) * a_ndim
    assert (a_ndim == len(win)) and (len(win) == len(stepby)), err
    shp = np.array(a.shape)    # array shape (r, c) or (d, r, c)
    win_shp = np.array(win)    # window      (3, 3) or (1, 3, 3)
    ss = np.array(stepby)      # step by     (1, 1) or (1, 1, 1)
    newshape = tuple(((shp - win_shp) // ss) + 1) + tuple(win_shp)
    newstrides = tuple(np.array(a.strides) * ss) + a.strides
    a_s = as_strided(a, shape=newshape, strides=newstrides, subok=True).squeeze()
    return a_s

I failed to point out that you can create an output that you could append as a column into pandas. Going back to the original definitions used above

nans = np.full_like(z, np.nan, dtype='float')  # z is the 20 number sequence
means = np.mean(s, axis=1)   # results from the strided mean
# assign the means to the output array skipping the first and last 3 and striding by 2

nans[3:-3:2] = means        

nans # array([nan, nan, nan,  3., nan,  5., nan,  7., nan,  9., nan, 11., nan, 13., nan, 15., nan, nan, nan, nan])



回答3:


if the data size is not too large,here is an easy way:

by = 2
win = 4
start = 3 ## it's the index of your 1st valid value.
df.rolling(win).mean()[start::by] ## caculate all, choose what you need.


来源:https://stackoverflow.com/questions/54301042/is-there-no-option-for-step-size-in-pandas-dataframe-rolling-is-there-another-f

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!