问题
I looked number different solutions online, but count not find what I am trying to achine. Please help me on this.
I am using Apache Spark 2.1.0 with Scala. Below is my dataframe:
+-----------+-------+
|COLUMN_NAME| VALUE |
+-----------+-------+
|col1 | val1 |
|col2 | val2 |
|col3 | val3 |
|col4 | val4 |
|col5 | val5 |
+-----------+-------+
I want this to be transpose to, as below:
+-----+-------+-----+------+-----+
|col1 | col2 |col3 | col4 |col5 |
+-----+-------+-----+------+-----+
|val1 | val2 |val3 | val4 |val5 |
+-----+-------+-----+------+-----+
回答1:
If your dataframe is small enough as in the question, then you can collect COLUMN_NAME to form schema and collect VALUE to form the rows and then create a new dataframe as
import org.apache.spark.sql.functions._
import org.apache.spark.sql.Row
//creating schema from existing dataframe
val schema = StructType(df.select(collect_list("COLUMN_NAME")).first().getAs[Seq[String]](0).map(x => StructField(x, StringType)))
//creating RDD[Row]
val values = sc.parallelize(Seq(Row.fromSeq(df.select(collect_list("VALUE")).first().getAs[Seq[String]](0))))
//new dataframe creation
sqlContext.createDataFrame(values, schema).show(false)
which should give you
+----+----+----+----+----+
|col1|col2|col3|col4|col5|
+----+----+----+----+----+
|val1|val2|val3|val4|val5|
+----+----+----+----+----+
回答2:
You can do this using pivot
, but you still need aggregation but what if you have multiple value
for a COLUMN_NAME
?
val df = Seq(
("col1", "val1"),
("col2", "val2"),
("col3", "val3"),
("col4", "val4"),
("col5", "val5")
).toDF("COLUMN_NAME", "VALUE")
df
.groupBy()
.pivot("COLUMN_NAME").agg(first("VALUE"))
.show()
+----+----+----+----+----+
|col1|col2|col3|col4|col5|
+----+----+----+----+----+
|val1|val2|val3|val4|val5|
+----+----+----+----+----+
EDIT:
if your dataframe is really that small as in your example, you can collect it as Map
:
val map = df.as[(String,String)].collect().toMap
and then apply this answer
来源:https://stackoverflow.com/questions/49392683/transpose-dataframe-without-aggregation-in-spark-with-scala