问题
Here is the spline without constraints:
from geomdl import fitting
from geomdl.visualization import VisMPL
path = [(2077.0, 712.0, 1136.6176470588234), (2077.0004154771536, 974.630482962754, 1313.735294117647), (2077.1630960823995, 1302.460574562254, 1490.8529411764707), (2078.1944091179635, 1674.693193015173, 1667.9705882352941), (2080.5096120056783, 2086.976611915444, 1845.0882352941176), (2085.1051468332066, 2711.054258877495, 2022.2058823529412), (1477.0846185328733, 2803.6223679691457, 2199.323529411765), (948.4693105162195, 2802.0390667447105, 2376.4411764705883), (383.8615403256207, 2804.843424134807, 2553.5588235294117), (-41.6669725172834, 2497.067373170676, 2730.676470588235), (-37.94311919744064, 1970.5155845437525, 2907.794117647059), (-35.97395938535092, 1576.713103381243, 3084.9117647058824), (-35.125016151504795, 1214.2319876178394, 3262.029411764706), (-35.000550767864524, 893.3910350913443, 3439.1470588235297), (-35.0, 631.2108462417168, 3616.264705882353), (-35.0, 365.60545190581837, 3793.3823529411766), (-35.0, 100.00005756991993, 3970.5)]
degree = 3
curve = fitting.interpolate_curve(path, degree)
curve.vis = VisMPL.VisCurve3D()
curve.render()
# the following is to show it under matplotlib and prepare solutions comparison
import numpy as np
import matplotlib.pyplot as plt
qtPoints = 3*len(path)
s = np.linspace(0, 1, qtPoints, True).tolist()
pt = curve.tangent(s) # returns points and tangents
spline = [u for u, v in pt] # get points, leave tangents
I want to add constraints:
- x >= -35
- x <= 2077
- y <= 2802
The geomdl
library does not propose splines with constraints. I have tried this hack, just by correcting points to stay inside the boundaries:
path2 = [(x if x >= -35 else -35, y if y <= 2802 else 2802, z) for x,y,z in spline]
path2 = [(x if x <= 2077 else 2077, y, z) for x,y,z in path2]
curve2 = fitting.interpolate_curve(path2, 3)
pt2 = curve2.tangent(s) # returns points and tangents
spline2 = [u for u, v in pt2] # get points, leave tangents
plt.plot([u[0] for u in path], [u[1] for u in path], 'o',
[u[0] for u in spline], [u[1] for u in spline], 'b',
[u[0] for u in spline2], [u[1] for u in spline2], 'r')
plt.show()
curve2.vis = VisMPL.VisCurve3D()
curve2.render()
Here are both together (turned 90° left):
The result is not satisfactory (in red):
Another way is to use directly the path as control points. Here is the result with NURBS:
from geomdl import NURBS
curve_n = NURBS.Curve()
curve_n.degree = min(degree, len(path)) # order = degree+1
curve_n.ctrlpts = path
last_knot = len(path) - curve_n.degree
curve_n.knotvector = np.concatenate((np.zeros(curve_n.degree), np.arange(0, last_knot + 1), np.ones(curve_n.degree)*last_knot)).astype(int)
curve_n.delta = 0.05
spline_n = curve_n.evalpts
plt.plot([u[0] for u in path], [u[1] for u in path], 'o',
[u[0] for u in spline_f], [u[1] for u in spline_f], 'b',
[u[0] for u in spline2], [u[1] for u in spline2], 'r',
[u[0] for u in spline_n], [u[1] for u in spline_n], 'g')
plt.show()
The result (in green) is too far from the path.
If I use the NURBS points to perform a new fitting, and playing with the NURBS degree, I obtain something satisfactory:
from geomdl import fitting
from geomdl import NURBS
#from geomdl.visualization import VisMPL
import numpy as np
import matplotlib.pyplot as plt
path = [(2077.0, 712.0, 1136.6176470588234), (2077.0004154771536, 974.630482962754, 1313.735294117647), (2077.1630960823995, 1302.460574562254, 1490.8529411764707), (2078.1944091179635, 1674.693193015173, 1667.9705882352941), (2080.5096120056783, 2086.976611915444, 1845.0882352941176), (2085.1051468332066, 2711.054258877495, 2022.2058823529412), (1477.0846185328733, 2803.6223679691457, 2199.323529411765), (948.4693105162195, 2802.0390667447105, 2376.4411764705883), (383.8615403256207, 2804.843424134807, 2553.5588235294117), (-41.6669725172834, 2497.067373170676, 2730.676470588235), (-37.94311919744064, 1970.5155845437525, 2907.794117647059), (-35.97395938535092, 1576.713103381243, 3084.9117647058824), (-35.125016151504795, 1214.2319876178394, 3262.029411764706), (-35.000550767864524, 893.3910350913443, 3439.1470588235297), (-35.0, 631.2108462417168, 3616.264705882353), (-35.0, 365.60545190581837, 3793.3823529411766), (-35.0, 100.00005756991993, 3970.5)]
degree = 3
qtPoints = 3*len(path)
# fitting without constraints
curve_f = fitting.interpolate_curve(path, degree)
#curve.vis = VisMPL.VisCurve3D()
#curve.render()
s = np.linspace(0, 1, qtPoints, True).tolist()
pt = curve_f.tangent(s) # returns points and tangents
spline = [u for u, v in pt] # get points, leave tangents
# fitting with constraints, awkward hack
path2 = [(x if x >= -35 else -35, y if y <= 2802 else 2802, z) for x,y,z in spline]
path2 = [(x if x <= 2077 else 2077, y, z) for x,y,z in path2]
curve2 = fitting.interpolate_curve(path2, 3)
pt2 = curve2.tangent(s) # returns points and tangents
spline2 = [u for u, v in pt2] # get points, leave tangents
# control points = path
curve_n = NURBS.Curve()
curve_n.degree = 2 #min(degree, len(path)) # order = degree+1
curve_n.ctrlpts = path
last_knot = len(path) - curve_n.degree
curve_n.knotvector = np.concatenate((np.zeros(curve_n.degree), np.arange(0, last_knot + 1), np.ones(curve_n.degree)*last_knot)).astype(int)
curve_n.delta = 0.05
spline_n = curve_n.evalpts
# fitting without constraints on NURBS points
curve3 = fitting.interpolate_curve(spline_n, 3)
pt3 = curve3.tangent(s) # returns points and tangents
spline3 = [u for u, v in pt3] # get points, leave tangents
plt.plot([u[0] for u in path], [u[1] for u in path], 'o',
[u[0] for u in spline_f], [u[1] for u in spline_f], 'b',
[u[0] for u in spline2], [u[1] for u in spline2], 'r',
[u[0] for u in spline3], [u[1] for u in spline3], 'y',
[u[0] for u in spline_n], [u[1] for u in spline_n], 'g')
plt.show()
But it is not robust, and possibly just an infamous DIY.
[True if x >= -35 and x <= 2077 and y <= 2802 else False for x,y,z in spline3]
[True, False, False, False, False, False, False, False, False, False, False, False, False, False, True, True, True, True, True, True, True, False, False, False, False, True, True, True, True, True, True, True, True, False, False, False, False, False, False, False, False, False, False, False, False, True, False, False, True, True, True]
How to keep it smooth, on the path, and whith respect to the constraints please, possibly with another library? I found this, but that solves derivatives constraints and I don't figure out how to adapt this solution. I raised also the question on a strictly mathematical point of view here.
回答1:
Well, tough topic, but I got it, inspired by this for 2D border (derivative) constrained splines. The proposed solution makes use also of scipy.optimize.minimize
.
Here is the full code, and after some explanations:
import numpy as np
from scipy.interpolate import UnivariateSpline, splev, splprep, BSpline
from scipy.optimize import minimize
xmin = -35
xmax = 2077
ymax = 2802
def guess(p, k, s, w=None):
"""Do an ordinary spline fit to provide knots"""
return splprep(p, w, k=k, s=s)
def err(c, p, u, t, c_shape, k, w=None):
"""The error function to minimize"""
diff = (np.array(p) - splev(u, (t, c.reshape(c_shape), k))).flatten()
if w is None:
diff = (diff*diff).sum()
else:
diff = (diff*diff*w).sum() #not sure it is the good way to multiply w
return np.abs(diff)
def constraint(c, l, t, c_shape, k, eqorineq, eqinterv):
X = np.linspace(0, 1, l*20)
v = splev(X, (t, c.reshape(c_shape), k))
if eqorineq == 'ineq':
ineq_contrib = sum([(x < xmin)*(x-xmin)**2 + (x > xmax)*(x-xmax)**2 for x in v[0]] \
+ [(y > ymax)*(y-ymax)**2 for y in v[1]])
eq_contrib = 0
for i in range(len(X)):
eq_contrib += (X[i] >= eqinterv[0][0] and X[i] <= eqinterv[0][1]) * (v[0][i] - xmin)**2 \
+ (X[i] >= eqinterv[1][0] and X[i] <= eqinterv[1][1]) * (v[0][i] - xmax)**2 \
+ (X[i] >= eqinterv[2][0] and X[i] <= eqinterv[2][1]) * (v[1][i] - ymax)**2
return -(ineq_contrib + eq_contrib)
# return -1 * ineq_contrib
elif eqorineq == 'eq':
res = 0 # equality
for i in range(len(X)):
if X[i] >= eqinterv[0][0] and X[i] <= eqinterv[0][1] and v[0][i] != xmin \
or X[i] >= eqinterv[1][0] and X[i] <= eqinterv[1][1] and v[0][i] != xmax \
or X[i] >= eqinterv[2][0] and X[i] <= eqinterv[2][1] and v[1][i] != ymax :
res = 1
return res
def spline_neumann(p, k=3, s=0, w=None):
tck, u = guess(p, k, s, w=w)
t, c0, k = tck
c0flat = np.array(c0).flatten()
c_shape = np.array(c0).shape
x0 = 0 #x[0] # point at which zero slope is required
# compute u intervals for eq constraints
xmin_umin = xmin_umax = xmax_umin = xmax_umax = ymax_umin = ymax_umax = -1
for i in range(len(p[0])):
if xmin_umin == -1 and p[0][i] <= xmin : xmin_umin = u[i]
if xmin_umin != -1 and xmin_umax == -1 and p[0][i] > xmin : xmin_umax = u[i-1]
if xmax_umin == -1 and p[0][i] >= xmax : xmax_umin = u[i]
if xmax_umin != -1 and xmax_umax == -1 and p[0][i] < xmax : xmax_umax = u[i-1]
if ymax_umin == -1 and p[1][i] >= ymax : ymax_umin = u[i]
if ymax_umin != -1 and ymax_umax == -1 and p[1][i] < ymax : ymax_umax = u[i-1]
eqinterv = [[xmin_umin, xmin_umax], [xmax_umin, xmax_umax], [ymax_umin, ymax_umax]]
for i in range(len(eqinterv)):
if eqinterv[i][0] == -1 : eqinterv[i][0] = 0
if eqinterv[i][1] == -1 : eqinterv[i][1] = 1
print("eqinterv = ", eqinterv)
con = {'type': 'ineq', 'fun': lambda c: constraint(c, len(p[0]), t, c_shape, k, 'ineq', eqinterv)
#'type': 'eq', 'fun': lambda c: constraint(c, len(p[0]), t, c_shape, k, 'eq', eqinterv)
#'fun': lambda c: splev(x0, (t, c.reshape(c_shape), k), der=1),
#'jac': lambda c: splev(x0, (t, c, k), der=2) # doesn't help, dunno why
}
opt = minimize(err, c0flat, (p, u, t, c_shape, k, w), constraints=con)
#opt = minimize(err, c0, (p, u, t, c_shape, k, w), method='Nelder-Mead', constraints=con)
#opt = minimize(err, c0flat, (p, u, t, c_shape, k, w))
copt = opt.x.reshape(c_shape)
#return UnivariateSpline._from_tck((t, copt, k))
#return BSpline(t, k, copt)
return ((t, copt, k), opt.success)
import matplotlib.pyplot as plt
path = [(2077.0, 712.0, 1136.6176470588234), (2077.0004154771536, 974.630482962754, 1313.735294117647), (2077.1630960823995, 1302.460574562254, 1490.8529411764707), (2078.1944091179635, 1674.693193015173, 1667.9705882352941), (2080.5096120056783, 2086.976611915444, 1845.0882352941176), (2085.1051468332066, 2711.054258877495, 2022.2058823529412), (1477.0846185328733, 2803.6223679691457, 2199.323529411765), (948.4693105162195, 2802.0390667447105, 2376.4411764705883), (383.8615403256207, 2804.843424134807, 2553.5588235294117), (-41.6669725172834, 2497.067373170676, 2730.676470588235), (-37.94311919744064, 1970.5155845437525, 2907.794117647059), (-35.97395938535092, 1576.713103381243, 3084.9117647058824), (-35.125016151504795, 1214.2319876178394, 3262.029411764706), (-35.000550767864524, 893.3910350913443, 3439.1470588235297), (-35.0, 631.2108462417168, 3616.264705882353), (-35.0, 365.60545190581837, 3793.3823529411766), (-35.0, 100.00005756991993, 3970.5)]
pathxyz = [[x for x,y,z in path], [y for x,y,z in path], [z for x,y,z in path]]
n = len(path)
#std would be interesting to define as the standard deviation of the curve compared to a no noise one. No noise ==> s=0
k = 5
s = 0
sp0, u = guess(pathxyz, k, s)
sp, success = spline_neumann(pathxyz, k, s) #s=n*std
print("success = ", success)
# % of points not respecting the constraints
perfo_vs_ineq = (sum([(x < xmin) for x in v[0]]) + sum([(x > xmax) for x in v[0]]) + sum([(y > ymax) for y in v[1]]) )/len(v[0])/2
print("perfo% vs ineq constraints = ", perfo_vs_ineq)
X = np.linspace(0, 1, len(pathxyz)*10)
val0 = splev(X, sp0)
val = splev(X, sp)
fig = plt.figure()
ax = fig.gca(projection='3d')
ax.plot([x for x,y,z in path], [y for x,y,z in path], [z for x,y,z in path], 'ro')
ax.plot(val0[0], val0[1], val0[2], 'b-')
ax.plot(val[0], val[1], val[2], 'r-')
plt.show()
plt.figure()
plt.plot(val0[0], val0[1], '-b', lw=1, label='guess')
plt.plot(val[0], val[1], '-r', lw=2, label='spline')
plt.plot(pathxyz[0], pathxyz[1], 'ok', label='data')
plt.legend(loc='best')
plt.show()
At the end, I have both a 2D and 3D rendering. The 3D view shows that the spline uses the z-axes for smoothing. That's not satisfactory for my use case, so I will have to take it into account in my constraints, but that's out of the scope of this Q/A:
And the 2D view that shows the constraints effects on the spline:
The blue curve is without constraints, and the red one with.
Now the explanations for the wayforward:
- The spline without constraints is computed with:
sp0, u = guess(pathxyz, k, s)
- The spline with constraints is computed with:
sp, success = spline_neumann(pathxyz, k, s)
- Then it prints
success
followingscipy.optimize.minimize
criteria and a custom criteria based on inequalities constraints as the percentage of points not satisfying the constraints:
print("success = ", success)
perfo_vs_ineq = (sum([(x < xmin) for x in v[0]]) + sum([(x > xmax) for x in v[0]]) + sum([(y > ymax) for y in v[1]]) )/len(v[0])/2
print("perfo% vs ineq constraints = ", perfo_vs_ineq)
- The optimisation under constraints is performed by:
opt = minimize(err, c0flat, (p, u, t, c_shape, k, w), constraints=con)
. It optimises the coefficients of the spline initialised withc0flat
obtained by the non constrained solving - It returns the coefficients in
copt = opt.x
we have to reshape to be able to be used bysplev
withcopt = opt.x.reshape(c_shape)
splev
is used to evaluate both splines - unconstrained and constrained - nothing new here:
X = np.linspace(0, 1, len(pathxyz)*10)
val0 = splev(X, sp0)
val = splev(X, sp)
- The
scipy.optimize.minimize
arguments and return values are explained in the manual. So I am going to explain only what is specific here err
is the cost to minimize. It is built to stick to the control points:
def err(c, p, u, t, c_shape, k, w=None):
"""The error function to minimize"""
diff = (np.array(p) - splev(u, (t, c.reshape(c_shape), k))).flatten()
if w is None:
diff = (diff*diff).sum()
else:
diff = (diff*diff*w).sum() #not sure it is the good way to multiply w
return np.abs(diff)
- I have not tested with the weight argument
w
. What's important to understand here is that we perform the evaluation on the control points only, using the curvilinear coordinates provided byu
. The cost is the difference between the control points and how they are evaluated with the new computed coefficientsc
tried byscipy.optimize.minimize
- And then we come to the constraints provided to
scipy.optimize.minimize
byconstraints=con
defined as:
con = {'type': 'ineq', 'fun': lambda c: constraint(c, len(p[0]), t, c_shape, k, 'ineq', eqinterv)
#'type': 'eq', 'fun': lambda c: constraint(c, len(p[0]), t, c_shape, k, 'eq', eqinterv)
- I use only
ineq
ualities since tests witheq
ualities gives poor results in my use case, but I have let the code if it may help someone. So both inequalities and equalities constraints are computed with the functionconstraint(c, len(p[0]), t, c_shape, k, 'ineq', eqinterv)
. I have prefered one function instead of a list of ones to perform the spline evaluation only once. So of course,c
is the argument under evaluation byscipy.optimize.minimize
,t
andk
complete the(t,c,k)
tuple required for evaluation,len(p[0])
is related to the number of points to evaluate which is proportional,'ineq'
tellsconstraint
to deal with inequalities, andeqinterv
is a vector where I want to evaluate equalities computed as a cost. In my use case, I recall I needx >= -35 and x <= 2077 and y <= 2802
. I don't detail the calculation which is specific to my use case, I only stress the point the intervals are related to the curvilinear coordinates homogeneous tou
:
xmin_umin = xmin_umax = xmax_umin = xmax_umax = ymax_umin = ymax_umax = -1
for i in range(len(p[0])):
if xmin_umin == -1 and p[0][i] <= xmin : xmin_umin = u[i]
if xmin_umin != -1 and xmin_umax == -1 and p[0][i] > xmin : xmin_umax = u[i-1]
if xmax_umin == -1 and p[0][i] >= xmax : xmax_umin = u[i]
if xmax_umin != -1 and xmax_umax == -1 and p[0][i] < xmax : xmax_umax = u[i-1]
if ymax_umin == -1 and p[1][i] >= ymax : ymax_umin = u[i]
if ymax_umin != -1 and ymax_umax == -1 and p[1][i] < ymax : ymax_umax = u[i-1]
- Then the cost for equalities is computed with:
eq_contrib = 0
for i in range(len(X)):
eq_contrib += (X[i] >= eqinterv[0][0] and X[i] <= eqinterv[0][1]) * (v[0][i] - xmin)**2 \
+ (X[i] >= eqinterv[1][0] and X[i] <= eqinterv[1][1]) * (v[0][i] - xmax)**2 \
+ (X[i] >= eqinterv[2][0] and X[i] <= eqinterv[2][1]) * (v[1][i] - ymax)**2
- Inequalities cost is simple:
ineq_contrib = sum([(x < xmin)*(x-xmin)**2 + (x > xmax)*(x-xmax)**2 for x in v[0]] \
+ [(y > ymax)*(y-ymax)**2 for y in v[1]])
That's it, hoping it is usefull.
来源:https://stackoverflow.com/questions/61674584/how-to-add-boundary-constraints-to-a-spline-with-geomdl-or-other-library