Input dimension for CrossEntropy Loss in PyTorch

空扰寡人 提交于 2020-05-15 21:21:13

问题


For a binary classification problem with batch_size = 1, I have logit and label values using which I need to calculate loss.

logit: tensor([0.1198, 0.1911], device='cuda:0', grad_fn=<AddBackward0>)
label: tensor(1], device='cuda:0')
# calculate loss
loss_criterion = nn.CrossEntropyLoss()
loss_criterion.cuda()
loss = loss_criterion( b_logits, b_labels )

However, this always results in the following error,

IndexError: Dimension out of range (expected to be in range of [-1, 0], but got 1)

What input dimensions is the CrossEntropyLoss actually asking for?


回答1:


You are passing wrong shape of tensors.
shape should be (from doc)

  • Input: (N,C) where C = number of classes
  • Target: (N) where each value is 0 ≤ targets[i] ≤ C−1

So here, b_logits shape should be ([1,2]) instead of ([2]) to make it right shape you can use torch.view like b_logits.view(1,-1).

And b_labels shape should be ([1]).
Ex.:

b_logits = torch.tensor([0.1198, 0.1911], requires_grad=True)
b_labels = torch.tensor([1])
loss_criterion = nn.CrossEntropyLoss()

loss = loss_criterion( b_logits.view(1,-1), b_labels )
loss
tensor(0.6581, grad_fn=<NllLossBackward>)


来源:https://stackoverflow.com/questions/61501417/input-dimension-for-crossentropy-loss-in-pytorch

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!