问题
This is the question:
Given a positive integer num, return the sum of all odd Fibonacci numbers that are less than or equal to num.
The first two numbers in the Fibonacci sequence are 1 and 1. Every additional number in the sequence is the sum of the two previous numbers. The first six numbers of the Fibonacci sequence are 1, 1, 2, 3, 5 and 8.
For example, sumFibs(10) should return 10 because all odd Fibonacci numbers less than or equal to 10 are 1, 1, 3, and 5.
This is what I tried
function sumFibs(num, total = [1, 1], n = (total.length - 1 + total.length - 2)) {
if(n == num){
return total;
}
total.push(n);
sumFibs(num, n = (total.length - 1 + total.length - 2), total);
};
Question
Is it possible to use my method to make this work, if so how do I fix the syntax? If not, how would you solve the problem.
Many thanks!
回答1:
Four things
(1) You don't return the result of the recursive call, therefore it does never get passed up to the caller:
sumFibs(4, [1, 1]) -> sumFibs(4, [1, 1, 2]) -> sumFibs(4, [1, 1, 2, 3])
<- [1, 1, 2, 3]
// v the return you do
// v the return you need too
(2) In the recursive call, the order of arguments is wrong.
(3) I guess instead of taking the arrays length minus 1, you want to access the property at that position in the total
array.
(4) Why do you actually n
as an argument? As it is only depending on total
, it could also just be a variable:
function sumFibs(num, total = [1, 1]) {
const n = total[total.length - 1] + total[total.length - 2];
if(n > num){
return total;
}
total.push(n);
return sumFibs(num, total);
}
console.log(sumFibs(19));
回答2:
continuation passing style
Continuation passing style effectively gives you programmatic return
. Using a CPS function recursively can make program complexity evaporate into thin air -
const identity = x =>
x
const sumfib = (n = 0, then = identity) =>
n <= 0
? then(0, 1, 1) // base case
: sumfib // inductive: solve smaller subproblem
( n - 1
, (sum, fib, temp) =>
then(sum + fib, temp, fib + temp)
)
console.log
( sumfib(0) // 0 = 0
, sumfib(1) // 1 = 0 + 1
, sumfib(2) // 2 = 0 + 1 + 1
, sumfib(3) // 4 = 0 + 1 + 1 + 2
, sumfib(4) // 7 = 0 + 1 + 1 + 2 + 3
, sumfib(5) // 12 = 0 + 1 + 1 + 2 + 3 + 5
, sumfib(6) // 20 = 0 + 1 + 1 + 2 + 3 + 5 + 8
, sumfib(7) // 33 = 0 + 1 + 1 + 2 + 3 + 5 + 8 + 13
)
loop/recur
loop
and recur
give us the ability to write recursive programs like the one above, but will not encounter a stack overflow error -
const recur = (...values) =>
({ recur, values })
const loop = f =>
{ let r = f()
while (r && r.recur === recur)
r = f(...r.values)
return r
}
const sumfib = (n = 0) =>
loop // <-- loop with vars
( ( m = n
, sum = 0
, fib = 1
, temp = 1
) =>
m <= 0 // <-- exit condition
? sum // <-- base case
: recur // <-- recur with updated vars
( m - 1
, sum + fib
, temp
, temp + fib
)
)
console.log
( sumfib(0) // 0 = 0
, sumfib(1) // 1 = 0 + 1
, sumfib(2) // 2 = 0 + 1 + 1
, sumfib(3) // 4 = 0 + 1 + 1 + 2
, sumfib(4) // 7 = 0 + 1 + 1 + 2 + 3
, sumfib(5) // 12 = 0 + 1 + 1 + 2 + 3 + 5
, sumfib(6) // 20 = 0 + 1 + 1 + 2 + 3 + 5 + 8
, sumfib(7) // 33 = 0 + 1 + 1 + 2 + 3 + 5 + 8 + 13
)
streamz
so-called streams are interesting because they can possibly generate infinite values, but we don't have to compute them all at once. Again we can define our program in simple terms and let useful primitives do all of the hard work -
const fibs =
stream(0, _ =>
stream(1, _ =>
streamAdd(fibs, fibs.next)))
console.log(streamTake(fibs, 10))
// [ 0, 1, 1, 2, 3, 5, 8, 13, 21, 34 ]
console.log(streamTake(streamSum(fibs), 10))
// [ 0, 1, 2, 4, 7, 12, 20, 33, 54, 88 ]
We just implement stream
, streamAdd
, streamSum
, and streamTake
-
const emptyStream =
Symbol('emptyStream')
const stream = (value, next) =>
( { value
, get next ()
{ delete this.next
return this.next = next()
}
}
)
const streamAdd = (s1, s2) =>
s1 === emptyStream || s2 === emptyStream
? emptyStream
: stream
( s1.value + s2.value
, _ => streamAdd(s1.next, s2.next)
)
const streamSum = (s, sum = 0) =>
s === emptyStream
? emptyStream
: stream
( sum + s.value
, _ => streamSum(s.next, sum + s.value)
)
const streamTake = (s = emptyStream, n = 0) =>
s === emptyStream || n <= 0
? []
: [ s.value, ...streamTake(s.next, n - 1) ]
Expand the snippet below to verify the results in your own browser -
const emptyStream =
Symbol('emptyStream')
const stream = (value, next) =>
( { value
, get next ()
{ delete this.next
return this.next = next()
}
}
)
const streamAdd = (s1, s2) =>
s1 === emptyStream || s2 === emptyStream
? emptyStream
: stream
( s1.value + s2.value
, _ => streamAdd(s1.next, s2.next)
)
const streamSum = (s, sum = 0) =>
s === emptyStream
? emptyStream
: stream
( sum + s.value
, _ => streamSum(s.next, sum + s.value)
)
const streamTake = (s = emptyStream, n = 0) =>
s === emptyStream || n <= 0
? []
: [ s.value, ...streamTake(s.next, n - 1) ]
const fibs =
stream(0, _ =>
stream(1, _ =>
streamAdd(fibs, fibs.next)))
console.log(streamTake(fibs, 10))
// [ 0, 1, 1, 2, 3, 5, 8, 13, 21, 34 ]
console.log(streamTake(streamSum(fibs), 10))
// [ 0, 1, 2, 4, 7, 12, 20, 33, 54, 88 ]
回答3:
This can be solved without an array accumulator; use n
as a counter and curr
and prev
vars to store the data necessary to compute the Fibonacci series. Whenever we have an odd curr
, add it to the running total and pass it up the call stack.
const sumOddFibs = (n, curr=1, prev=0) => {
if (curr < n) {
return sumOddFibs(n, curr + prev, curr) + (curr % 2 ? curr : 0);
}
return 0;
};
console.log(sumOddFibs(10));
As an aside, recursion is a pretty poor tool for just about anything that involves a sequential 0..n counter. Iteration makes more sense: less overhead, easier to understand and no risk of blowing the call stack. I'd also separate computation of the Fibonacci series (which is a good use case for a generator) from filtering oddness and summing so that each step is independent and can be reused:
const sum = arr => arr.reduce((a, e) => a + e);
const odds = arr => arr.filter(e => e % 2);
function *fibsBelow(n) {
for (let prev = 0, curr = 1; curr < n;) {
yield curr;
const tmp = curr;
curr += prev;
prev = tmp;
}
}
console.log(sum(odds([...fibsBelow(10)])));
来源:https://stackoverflow.com/questions/61369435/trying-to-use-recursion-to-solve-fibonacci-javascript