SaveDefinitions considered dangerous

懵懂的女人 提交于 2019-11-27 18:24:13

Here is an attempt. The idea is to identify symbols with DownValues or some other ...Values inside your manipulated code, and automatically rename them using unique variables / symbols in place of them. The idea here can be executed rather elegantly with the help of cloning symbols functionality, which I find useful from time to time. The function clone below will clone a given symbol, producing a symbol with the same global definitions:

Clear[GlobalProperties];
GlobalProperties[] :=
  {OwnValues, DownValues, SubValues, UpValues, NValues, FormatValues, 
      Options, DefaultValues, Attributes};


Clear[unique];
unique[sym_] :=
 ToExpression[
    ToString[Unique[sym]] <> 
       StringReplace[StringJoin[ToString /@ Date[]], "." :> ""]];


Attributes[clone] = {HoldAll};
clone[s_Symbol, new_Symbol: Null] :=
  With[{clone = If[new === Null, unique[Unevaluated[s]], ClearAll[new]; new],
        sopts = Options[Unevaluated[s]]},
     With[{setProp = (#[clone] = (#[s] /. HoldPattern[s] :> clone)) &},
        Map[setProp, DeleteCases[GlobalProperties[], Options]];
        If[sopts =!= {}, Options[clone] = (sopts /. HoldPattern[s] :> clone)];
        HoldPattern[s] :> clone]]

There are several alternatives of how to implement the function itself. One is to introduce the function with another name, taking the same arguments as Manipulate, say myManipulate. I will use another one: softly overload Manipulate via UpValues of some custom wrapper, that I will introduce. I will call it CloneSymbols. Here is the code:

ClearAll[CloneSymbols];
CloneSymbols /: 
Manipulate[args___,CloneSymbols[sd:(SaveDefinitions->True)],after:OptionsPattern[]]:=
   Unevaluated[Manipulate[args, sd, after]] /.
     Cases[
       Hold[args],
       s_Symbol /; Flatten[{DownValues[s], SubValues[s], UpValues[s]}] =!= {} :> 
          clone[s],
       Infinity, Heads -> True];

Here is an example of use:

f[x_] := Sin[x];
g[x_] := x^2;

Note that to use the new functionality, one has to wrap the SaveDefinitions->True option in CloneSymbols wrapper:

Manipulate[Plot[ f[n g[x]], {x, -3, 3}], {n, 1, 4}, 
          CloneSymbols[SaveDefinitions -> True]]

This will not affect the definitions of original symbols in the code inside Manipulate, since it were their clones whose definitions have been saved and used in initialization now. We can look at the FullForm for this Manipulate to confirm that:

Manipulate[Plot[f$37782011751740542578125[Times[n,g$37792011751740542587890[x]]],
   List[x,-3,3]],List[List[n,1.9849999999999999`],1,4],RuleDelayed[Initialization,
     List[SetDelayed[f$37782011751740542578125[Pattern[x,Blank[]]],Sin[x]],
       SetDelayed[g$37792011751740542587890[Pattern[x,Blank[]]],Power[x,2]]]]]

In particular, you can change the definitions of functions to say

f[x_]:=Cos[x];
g[x_]:=x;

Then move the slider of the Manipulate produced above, and then check the function definitions

?f
Global`f
f[x_]:=Cos[x]

?g
Global`g
g[x_]:=x

This Manipulate is reasonably independent of anything and can be copied and pasted safely. What happens here is the following: we first find all symbols with non-trivial DownValues, SubValues or UpValues (one can probably add OwnValues as well), and use Cases and clone to create their clones on the fly. We then replace lexically all the cloned symbols with their clones inside Manipulate, and then let Manipulate save the definitions for the clones. In this way, we make a "snapshot" of the functions involved, but do not affect the original functions in any way.

The uniqueness of the clones (symbols) has been addressed with the unique function. Note however, that while the Manipulate-s obtained in this way do not threaten the original function definitions, they will generally still depend on them, so one can not consider them totally independent of anything. One would have to walk down the dependency tree and clone all symbols there, and then reconstruct their inter-dependencies, to construct a fully standalone "snapshot" in Manipulate. This is doable but more complicated.

EDIT

Per request of @Sjoerd, I add code for a case when we do want our Manipulate-s to update to the function's changes, but do not want them to actively interfere and change any global definitions. I suggest a variant of a "pointer" technique: we will again replace function names with new symbols, but, rather than cloning those new symbols after our functions, we will use the Manipulate's Initialization option to simply make those symbols "pointers" to our functions, for example like Initialization:>{new1:=f,new2:=g}. Clearly, re-evaluation of such initialization code can not harm the definitions of f or g, and at the same time our Manipulate-s will become responsive to changes in those definitions.

The first thought is that we could just simply replace function names by new symbols and let Manipulate initialization automatically do the rest. Unfortunately, in that process, it walks the dependency tree, and therefore, the definitions for our functions would also be included - which is what we try to avoid. So, instead, we will explicitly construct the Initialize option. Here is the code:

ClearAll[SavePointers];
SavePointers /: 
Manipulate[args___,SavePointers[sd :(SaveDefinitions->True)],
after:OptionsPattern[]] :=
Module[{init},
  With[{ptrrules = 
    Cases[Hold[args], 
      s_Symbol /; Flatten[{DownValues[s], SubValues[s], UpValues[s]}] =!= {} :> 
         With[{pointer = unique[Unevaluated[s]]},
            pointer := s;
            HoldPattern[s] :> pointer], 
            Infinity, Heads -> True]},
           Hold[ptrrules] /. 
              (Verbatim[HoldPattern][lhs_] :> rhs_ ) :> (rhs := lhs) /. 
               Hold[defs_] :> 
                 ReleaseHold[
                      Hold[Manipulate[args, Initialization :> init, after]] /. 
                            ptrrules /. init :> defs]]]

With the same definitions as before:

ClearAll[f, g];
f[x_] := Sin[x];
g[x_] := x^2;

Here is a FullForm of produced Manipulate:

In[454]:= 
FullForm[Manipulate[Plot[f[n g[x]],{x,-3,3}],{n,1,4},
     SavePointers[SaveDefinitions->True]]]

Out[454]//FullForm=   
Manipulate[Plot[f$3653201175165770507872[Times[n,g$3654201175165770608016[x]]],
List[x,-3,3]],List[n,1,4],RuleDelayed[Initialization,
List[SetDelayed[f$3653201175165770507872,f],SetDelayed[g$3654201175165770608016,g]]]]

The newly generated symbols serve as "pointers" to our functions. The Manipulate-s constructed with this approach, will be responsive for updates in our functions, and at the same time harmless for the main functions' definitions. The price to pay is that they are not self-contained and will not display correctly if the main functions are undefined. So, one can use either CloneSymbols wrapper or SavePointers, depending on what is needed.

The answer is to use initialization cell as initialization for the Manipulate:

Manipulate[
 Plot[n f[x], {x, -3, 3}], {n, 1, 4}, 
 Initialization :> FrontEndTokenExecute["EvaluateInitialization"]]

You can also use DynamicModule:

DynamicModule[{f},
 f[x_] := x^2;
 Manipulate[Plot[n f[x], {x, -3, 3}], {n, 1, 4}]]

You do not need SaveDefinitions -> True in this case.

EDIT

In response to Sjoerd's comment. With the following simple technique you do not need to copy the definition everywhere and update all copies if you change the definition (but you still need to re-evaluate your code to get updated Manipulate):

DynamicModule[{f}, f[x_] := x^2;
  list = Manipulate[Plot[n^# f[x], {x, -3, 3}], {n, 2, 4}] & /@ Range[3]];
list // Row
易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!