Comparator.reversed() does not compile using lambda

社会主义新天地 提交于 2019-11-25 21:39:40

This is a weakness in the compiler's type inferencing mechanism. In order to infer the type of u in the lambda, the target type for the lambda needs to be established. This is accomplished as follows. userList.sort() is expecting an argument of type Comparator<User>. In the first line, Comparator.comparing() needs to return Comparator<User>. This implies that Comparator.comparing() needs a Function that takes a User argument. Thus in the lambda on the first line, u must be of type User and everything works.

In the second and third lines, the target typing is disrupted by the presence of the call to reversed(). I'm not entirely sure why; both the receiver and the return type of reversed() are Comparator<T> so it seems like the target type should be propagated back to the receiver, but it isn't. (Like I said, it's a weakness.)

In the second line, the method reference provides additional type information that fills this gap. This information is absent from the third line, so the compiler infers u to be Object (the inference fallback of last resort), which fails.

Obviously if you can use a method reference, do that and it'll work. Sometimes you can't use a method reference, e.g., if you want to pass an additional parameter, so you have to use a lambda expression. In that case you'd provide an explicit parameter type in the lambda:

userList.sort(Comparator.comparing((User u) -> u.getName()).reversed());

It might be possible for the compiler to be enhanced to cover this case in a future release.

You can work around this limitation by using the two-argument Comparator.comparing with Comparator.reverseOrder() as the second argument:

users.sort(comparing(User::getName, reverseOrder()));
易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!