import paddle
import paddle.fluid as fluid
import numpy
import math
import sys
from __future__ import print_function
BATCH_SIZE = 20
train_reader = paddle.batch(
paddle.reader.shuffle(
paddle.dataset.uci_housing.train(), buf_size=500),
batch_size=BATCH_SIZE)
test_reader = paddle.batch(
paddle.reader.shuffle(
paddle.dataset.uci_housing.test(), buf_size=500),
batch_size=BATCH_SIZE)
x = fluid.layers.data(name='x', shape=[13], dtype='float32') # 定义输入的形状和数据类型
y = fluid.layers.data(name='y', shape=[1], dtype='float32') # 定义输出的形状和数据类型
y_predict = fluid.layers.fc(input=x, size=1, act=None) # 连接输入和输出的全连接层
main_program = fluid.default_main_program() # 获取默认/全局主函数
startup_program = fluid.default_startup_program() # 获取默认/全局启动程序
cost = fluid.layers.square_error_cost(input=y_predict, label=y) # 利用标签数据和输出的预测数据估计方差
avg_loss = fluid.layers.mean(cost) # 对方差求均值,得到平均损失
sgd_optimizer = fluid.optimizer.SGD(learning_rate=0.001)
sgd_optimizer.minimize(avg_loss)
#克隆main_program得到test_program
#有些operator在训练和测试之间的操作是不同的,例如batch_norm,使用参数for_test来区分该程序是用来训练还是用来测试
#该api不会删除任何操作符,请在backward和optimization之前使用
test_program = main_program.clone(for_test=True)
use_cuda = False
place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace() # 指明executor的执行场所
###executor可以接受传入的program,并根据feed map(输入映射表)和fetch list(结果获取表)向program中添加数据输入算子和结果获取算子。使用close()关闭该executor,调用run(...)执行program。
exe = fluid.Executor(place)
num_epochs = 100
def train_test(executor, program, reader, feeder, fetch_list):
accumulated = 1 * [0]
count = 0
for data_test in reader():
outs = executor.run(program=program,
feed=feeder.feed(data_test),
fetch_list=fetch_list)
accumulated = [x_c[0] + x_c[1][0] for x_c in zip(accumulated, outs)] # 累加测试过程中的损失值
count += 1 # 累加测试集中的样本数量
return [x_d / count for x_d in accumulated] # 计算平均损失
%matplotlib inline
params_dirname = "fit_a_line.inference.model"
feeder = fluid.DataFeeder(place=place, feed_list=[x, y])
exe.run(startup_program)
train_prompt = "train cost"
test_prompt = "test cost"
from paddle.utils.plot import Ploter
plot_prompt = Ploter(train_prompt, test_prompt)
step = 0
exe_test = fluid.Executor(place)
for pass_id in range(num_epochs):
for data_train in train_reader():
avg_loss_value, = exe.run(main_program,
feed=feeder.feed(data_train),
fetch_list=[avg_loss])
if step % 10 == 0: # 每10个批次记录并输出一下训练损失
plot_prompt.append(train_prompt, step, avg_loss_value[0])
plot_prompt.plot()
print("%s, Step %d, Cost %f" %
(train_prompt, step, avg_loss_value[0]))
if step % 100 == 0: # 每100批次记录并输出一下测试损失
test_metics = train_test(executor=exe_test,
program=test_program,
reader=test_reader,
fetch_list=[avg_loss.name],
feeder=feeder)
plot_prompt.append(test_prompt, step, test_metics[0])
plot_prompt.plot()
print("%s, Step %d, Cost %f" %
(test_prompt, step, test_metics[0]))
if test_metics[0] < 10.0: # 如果准确率达到要求,则停止训练
break
step += 1
if math.isnan(float(avg_loss_value[0])):
sys.exit("got NaN loss, training failed.")
#保存训练参数到之前给定的路径中
if params_dirname is not None:
fluid.io.save_inference_model(params_dirname, ['x'], [y_predict], exe)
infer_exe = fluid.Executor(place)
inference_scope = fluid.core.Scope()
def save_result(points1, points2):
import matplotlib
matplotlib.use('Agg')
import matplotlib.pyplot as plt
x1 = [idx for idx in range(len(points1))]
y1 = points1
y2 = points2
l1 = plt.plot(x1, y1, 'r--', label='predictions')
l2 = plt.plot(x1, y2, 'g--', label='GT')
plt.plot(x1, y1, 'ro-', x1, y2, 'g+-')
plt.title('predictions VS GT')
plt.legend()
plt.savefig('./image/prediction_gt.png')
with fluid.scope_guard(inference_scope):
[inference_program, feed_target_names,
fetch_targets] = fluid.io.load_inference_model(params_dirname, infer_exe) # 载入预训练模型
batch_size = 10
infer_reader = paddle.batch(
paddle.dataset.uci_housing.test(), batch_size=batch_size) # 准备测试集
infer_data = next(infer_reader())
infer_feat = numpy.array(
[data[0] for data in infer_data]).astype("float32") # 提取测试集中的数据
infer_label = numpy.array(
[data[1] for data in infer_data]).astype("float32") # 提取测试集中的标签
assert feed_target_names[0] == 'x'
results = infer_exe.run(inference_program,
feed={feed_target_names[0]: numpy.array(infer_feat)},
fetch_list=fetch_targets) # 进行预测
#打印预测结果和标签并可视化结果
print("infer results: (House Price)")
for idx, val in enumerate(results[0]):
print("%d: %.2f" % (idx, val)) # 打印预测结果
print("\nground truth:")
for idx, val in enumerate(infer_label):
print("%d: %.2f" % (idx, val)) # 打印标签值
save_result(results[0], infer_label) # 保存图片
把代码复制进去
点击运行查看效果:
来源:oschina
链接:https://my.oschina.net/u/169565/blog/3074846