如何在自定义的数据集上训练YOLOv5
YOLO系列的目标检测模型随着YOLOv5的引入变得越来越强大了。在这篇文章中,我们将介绍如何训练YOLOv5为你识别自己定制的对象。 本文我们使用公共血细胞检测数据集,你可以自己导出,也可以在自己自定义数据上使用本教程。 公共血细胞检测数据集: https://public.roboflow.ai/object-detection/bccd 为了训练检测器,我们采取以下步骤: 安装YOLOv5依赖项 下载自定义YOLOv5对象检测数据 定义YOLOv5模型配置和架构 训练一个定制的YOLOv5检测器 评估YOLOv5性能 可视化YOLOv5训练数据 对测试图像使用YOLOv5进行推断 导出并保存YOLOv5权重以供将来使用 YOLOv5的新技术点 就在两个月前,我们对googlebrain引入EfficientDet感到非常兴奋,并写了一些关于EfficientDet的博客文章。我们认为这个模型可能会超越YOLO家族在实时目标探测领域的突出地位,但事实证明我们错了。 三周内,YOLOv4在Darknet框架下发布,我们还写了很多关于YOLOv4技术解析的文章。 在写这些文章的几个小时之前,YOLOv5发布了,我们发现它非常清晰明了。 YOLOv5是在Ultralytics-Pythorch框架中编写的,使用起来非常直观,推理速度非常快。事实上