问题
I have a dataframe similar to below
id A B C D E
1 2 3 4 5 5
1 NaN 4 NaN 6 7
2 3 4 5 6 6
2 NaN NaN 5 4 1
I want to do a null value imputation for columns A
, B
, C
in a forward filling but for each group. That means, I want the forward filling be applied on each id
. How can I do that?
回答1:
Use GroupBy.ffill for forward filling per groups for all columns, but if first values per groups are NaN
s there is no replace, so is possible use fillna and last casting to integers:
print (df)
id A B C D E
0 1 2.0 3.0 4.0 5 NaN
1 1 NaN 4.0 NaN 6 NaN
2 2 3.0 4.0 5.0 6 6.0
3 2 NaN NaN 5.0 4 1.0
cols = ['A','B','C']
df[['id'] + cols] = df.groupby('id')[cols].ffill().fillna(0).astype(int)
print (df)
id A B C D E
0 1 2 3 4 5 NaN
1 1 2 4 4 6 NaN
2 2 3 4 5 6 6.0
3 2 3 4 5 4 1.0
Detail:
print (df.groupby('id')[cols].ffill().fillna(0).astype(int))
id A B C
0 1 2 3 4
1 1 2 4 4
2 2 3 4 5
3 2 3 4 5
Or:
cols = ['A','B','C']
df.update(df.groupby('id')[cols].ffill().fillna(0))
print (df)
id A B C D E
0 1 2.0 3.0 4.0 5 NaN
1 1 2.0 4.0 4.0 6 NaN
2 2 3.0 4.0 5.0 6 6.0
3 2 3.0 4.0 5.0 4 1.0
来源:https://stackoverflow.com/questions/53696707/how-to-do-forward-filling-for-each-group-in-pandas