题目描述
我们可以用2x1的小矩形横着或者竖着去覆盖更大的矩形。请问用n个2x1的小矩形无重叠地覆盖一个2xn的大矩形,总共有多少种方法?
思路
可以推一下:用2x1的小矩形覆盖2x1的大矩形共1种方法,覆盖2x2的矩形共2种方法,覆盖2x3的矩形共3种方法,覆盖2x4的矩形共5种方法,可以看出方法数满足斐波那契数列。
如上图所示,把使用2x1的矩形覆盖2x8的矩形的放法数记为f(8),则用第一个2x1的矩形覆盖时有两种放法:(1)竖着放,此时右边剩下2x7的区域,所以放法数还剩f(7);(2)横着放,此时左下角必须再横着放一个2x1的矩形,此时还剩下2x6的区域,所以剩余放法数f(6),所以f(8)=f(7)+f(6)。
代码如下:
class Solution { public: int rectCover(int number) { if(number<1) return 0; int a[2]; a[0] = 1; a[1] = 2; if(number<=2) return a[number-1]; for(int i=2; i<number; i++){ int t = a[0] + a[1]; a[0] = a[1]; a[1] = t; } return a[1]; } };
来源:https://www.cnblogs.com/flix/p/12572577.html