poj--1579--(DFS+记忆化搜索之经典)

末鹿安然 提交于 2020-03-26 07:20:50

记忆化搜索

 
记忆化搜索:算法上依然是搜索的流程,但是搜索到的一些解用 动态规划的那种思想和模式作一些保存。
一般说来,动态规划总要遍历所有的状态,而搜索可以排除一些无效状态。
更重要的是搜索还可以剪枝,可能剪去大量不必要的状态,因此在空间开销上往往比动态规划要低很多。
记忆化算法在求解的时候还是按着自顶向下的顺序,但是每求解一个状态,就将它的解保存下来,
以后再次遇到这个状态的时候,就不必重新求解了。
 
这种方法综合了搜索和动态规划两方面的优点,因而还是很有实用价值的。
虽然不能使用传统意义上的动态规划解决本题,但动态规划的思想仍然能起到作用。搜索相对于动态规划最大的劣势无非就是重复计算子结构,所以我们在搜索的过程中,对于每一个子结构只计算一次,之后保存到数组里,以后要用到的时候直接调用就可以了,这就是我要介绍的记忆化搜索。
记忆化搜索的实质是动态规划,效率也和动态规划接近,形式是搜索,简单直观,代码也容易编写,不需要进行什么拓扑排序了。
可以归纳为:记忆化搜索=搜索的形式+动态规划的思想

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

如下例:

#include<stdio.h>
#include<stdlib.h>
#include<string.h>
//using namespace std;
int arr[22][22][22];
int sum(int a,int b,int c){	
	if(a<=0||b<=0||c<=0){
		return 1;
	}
	
	else if(a>20||b>20||c>20){
		return arr[20][20][20]=sum(20,20,20);
	}
	else if(arr[a][b][c]){
		return arr[a][b][c];
	}
	
	else if(a<b&&b<c){
		return arr[a][b][c]=sum(a,b,c-1)+sum(a,b-1,c-1)-sum(a,b-1,c);
	}
	else{
		return arr[a][b][c]=sum(a-1,b,c)+sum(a-1,b-1,c)+sum(a-1,b,c-1)-sum(a-1,b-1,c-1);
	}
	
}
int main(){
	int a,b,c,m;
	while(scanf("%d%d%d",&a,&b,&c)!=EOF&&!(a==-1&&b==-1&&c==-1)){
		memset(arr,0,sizeof(arr));
		m=sum(a,b,c);
		printf("w(%d, %d, %d) = %d\n",a,b,c,m);
	}
	return 0;
}


 

 

 

 

标签
易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!