神经网络感知器算法调整原理是什么

爷,独闯天下 提交于 2020-03-17 01:48:05
  • 算法调整原理
  • 如果点分类正确,则什么也不做。
  • 如果点分类为正,但是标签为负,则分别减去 αp,αq, 和 α 至 w_1, w_2,w1​,w2​, 和 bb
  • 如果点分类为负,但是标签为正,则分别将αp,αq, 和 α 加到 w_1, w_2,w1​,w2​, 和 bb 上

 

感知器算法

掌握了感知器技巧后,我们就可以编写完整的感知器运算的算法了!

下面的视频将介绍感知器算法的伪代码,现在你还不需要担心什么是学习速率(learning rate),我们在之后的课程中会详细介绍为什么这里的伪代码中有学习率。

在视频下面的测验中,你将有机会用 Python 将其编成代码,并看看自己的感知器分类成果。加油!

Replay

Mute

Loaded: 100.00%

Remaining Time -0:00

Playback Rate

0.75x

Subtitles

Picture-in-PictureFullscreen

编写感知器算法

该编写代码了!在此练习中,你将实现感知器算法以分类下面的数据(位于文件 data.csv 中)。

 

感知器步骤如下所示。对于坐标轴为 (p,q)(p,q) 的点,标签 y,以及等式 \hat{y} = step(w_1x_1 + w_2x_2 + b)y^​=step(w1​x1​+w2​x2​+b) 给出的预测

  • 如果点分类正确,则什么也不做。
  • 如果点分类为正,但是标签为负,则分别减去 \alpha p, \alpha q,αp,αq, 和 \alphaα 至 w_1, w_2,w1​,w2​, 和 bb
  • 如果点分类为负,但是标签为正,则分别将 \alpha p, \alpha q,αp,αq, 和 \alphaα 加到 w_1, w_2,w1​,w2​, 和 bb 上。

然后点击测试运行绘出感知器算法给出的解决方案。它实际上会画出一组虚线,显示算法如何接近最佳解决方案(用黑色实线表示)。

请随意改动算法的参数(epoch 数量、学习速率,甚至随机化初始参数),看看初始条件对解决方案有何影响!

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!