【数据结构与算法之美】二叉树基础(上):什么样的二叉树适合用数组来存储?

心已入冬 提交于 2020-03-11 03:22:47

一、树

1.树的常用概念
根节点、叶子节点、父节点、子节点、兄弟节点,还有节点的高度、深度以及层数,树的高度。
2.概念解释
节点:树中的每个元素称为节点
父子关系:相邻两节点的连线,称为父子关系
根节点:没有父节点的节点
叶子节点:没有子节点的节点
父节点:指向子节点的节点
子节点:被父节点指向的节点
兄弟节点:具有相同父节点的多个节点称为兄弟节点关系
节点的高度:节点到叶子节点的最长路径所包含的边数
节点的深度:根节点到节点的路径所包含的边数
节点的层数:节点的深度+1(根节点的层数是1)
树的高度:等于根节点的高度

二、二叉树

1.概念
①什么是二叉树?
每个节点最多只有2个子节点的树,这两个节点分别是左子节点和右子节点。
②什么是满二叉树?
有一种二叉树,除了叶子节点外,每个节点都有左右两个子节点,这种二叉树叫做满二叉树。
③什么是完全二叉树?
叶子节点都在最底下两层,最后一层的叶子节点都靠左排列,并且除了最后一层,其他层的节点个数都要达到最大,这种二叉树叫作完全二叉树
2.完全二叉树的存储
①链式存储
每个节点由3个字段,其中一个存储数据,另外两个是指向左右子节点的指针。我们只要拎住根节点,就可以通过左右子节点的指针,把整棵树都串起来。这种存储方式比较常用,大部分二叉树代码都是通过这种方式实现的。
②顺序存储
用数组来存储,对于完全二叉树,如果节点X存储在数组中的下标为i,那么它的左子节点的存储下标为2*i,右子节点的下标为2*i+1,反过来,下标i/2位置存储的就是该节点的父节点。注意,根节点存储在下标为1的位置。完全二叉树用数组来存储时最省内存的方式。
3.二叉树的遍历
①前序遍历:对于树中的任意节点来说,先打印这个节点,然后再打印它的左子树,最后打印它的右子树。
②中序遍历:对于树中的任意节点来说,先打印它的左子树,然后再打印它的本身,最后打印它的右子树。
③后序遍历:对于树中的任意节点来说,先打印它的左子树,然后再打印它的右子树,最后打印它本身。
前序遍历的递推公式:
preOrder(r) = print r->preOrder(r->left)->preOrder(r->right)
中序遍历的递推公式:
inOrder(r) = inOrder(r->left)->print r->inOrder(r->right)
后序遍历的递推公式:
postOrder(r) = postOrder(r->left)->postOrder(r->right)->print r
时间复杂度:3种遍历方式中,每个节点最多会被访问2次,所以时间复杂度是O(n)。

三、课后思考

1.二叉树有哪几种存储方式?什么样的二叉树适合用数组来存储?

1)两种方法,一种是基于指针或者引用的二叉链式存储法,一种是基于数组的顺序存储法。

2)完全二叉树,那用数组存储无疑是最节省内存的一种方式。因为数组的存储方式并不需要像链式存储法那样,要存储额外的左右子节点的指针。这也是为什么完全二叉树会单独拎出来的原因,也是为什么完全二叉树要求最后一层的子节点都靠左的原因。

3)堆其实就是一种完全二叉树,最常用的存储方式就是数组。


2.给定一组数据,比如1,3,5,6,9,10.你来算算,可以构建出多少种不同的二叉树?【卡塔兰数】

推算法:当只有1个数的时候,能构建1个二叉树;2个数时是2个二叉树;3个数有6个二叉树;再看下4个数,原来是24个;最后得出n!

3.我们讲了三种二叉树的遍历方式,前、中、后序。实际上,还有另一种遍历方式,也就是按层遍历,你知道如何实现吗?

二叉树按层遍历,可以看作以根结点为起点,图的广度优先遍历的问题。

leetcode上有个类似的题目,链接为:https://leetcode.com/problems/binary-tree-level-order-traversal/

 

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!