汽车是我们生活中不可缺少的代步工具,搭载先进的ECU控制单元、高精传感器、高性能的执行器,并融合现代4G/5G通讯与定位网络技术的智能网联汽车已经走向了我们的生活之中。通过TBOX终端实现了车与车、车与互联网、车与智能交通、车与智慧小区、景区之间的信息传输,实现了车载网络的多融合生态。
我国汽车保有量还在持续不断的增长,中国也会快速进入到汽车社会与发达国家拉近千人保有量的距离,智能汽车更是得到飞速的发展,虽然整车销售略有下滑,但是汽车出行需求一直欠饱和,无法覆盖全面。2020年国内智能汽车硬件市场预计规模为2000亿,其中安全系统和自主驾驶相应空间为1128亿、415亿。2020年全球智能硬件市场规模可达7000亿,以安全系统和自主驾驶为代表的智能驾驶系统占半壁江山。
计算机电子通信技术极大提高了人们的驾乘体验,信息技术在汽车上的运用越来越广,汽车将越来越变得智能。所有与智能相关的,随之而来的安全问题也愈发突出。如果随着汽车外部访问的接口增多,有OBD,有CAN,有网关等。车载总线的开放程度也越来越高,博世、维克多、中汽中心、速锐得可以通过这些接口轻易访问车载CAN网络,对CAN网络的数据进行采集和适配,生成新的DBC文件用于测试及仿真。
目前针对车载CAN总线了解的多,实战的少,基于大数据的智能网联汽车更是少之又少,平台和企业对于信息的缺乏和监管,显得掣肘。以前的汽车,车载电子控制单元少,有的就一个ECU,甚至都没有BCM和更多的电子控制单元,对外的接口极少,非标准化,有的高端车内的CAN总线,又带一个封闭的内网网关,为此,针对汽车CAN总线数据采集和利用的企业屈指可数。大部分的企业等着车厂授权,造成了僧多粥少的局面。
通过汽车车载网络外部接口访问,例如通过蓝牙连接、OBD诊断接口、双绞线的CAN线及总线网关控制器等连接到关键ECU控制单元,获得对应的消息和数据,又是一项长期,关键、核心的,路人皆知但又无法实施的一项技术服务。很多客户根本无法承担其开发、差旅、工具、装置的周期和市场,不少的项目,只能看着流产。
因此,研究车载CAN总线网络的数据信息也是智能汽车信息最关键的信息,也是平台需要、运营需要、制造需要、用户需要的关键信息之一,研究这些汽车网络信息具有十分重要的行业价值和实践意义。
目前,针对车载网络、智能汽车关键是后续的数据利用问题,比如现在有基于国密芯片的数据加密,应用于国六柴油车污染治理4G远程排放管理车载终端H6 (远程OBD)GB-17691,也可以在一些轻型广播认证协议针对汽车CAN总线的数据算法加密,如奇瑞PEPS通过时间与周期加密可实现远程启动汽车场景的应用。也可以由服务器向TBOX等设备按照消息包处理加密,进行数据与设备之间的认证,相互完成认证的控制单元在进行数据传输的时候接收这些加密信息,从而进行可靠性极高的数据加密传输。
其二,我们在设计DBC文件的时候,有经常用到一个技术,CAN消息的时间间隔分析,在汽车CAN数据交互传输的过程中,加入一个轻量级的检测算法,该算法可以成功监测到毫秒级的消息来源,使数据形成一定结构化,有效保护数据网络传输,产品应用中,实现更高的可靠性,不过,这个成本比较大,就是针对不同的车,在软件开发过程中会比较消耗研发资源,也是需要长期投入,但是后期收益大。
其三,更牛逼的就是协同检测算法,基于模型可以量化数据安全性及每个CAN ID的保密性、完成性及可用性,有利于实现车载网络与安全机制融合构建。
行业采用的方法一般都是欲扬先抑,2013年美国***大会两位开发者***丰田普锐斯和福特翼虎汽车的控制系统,2015两位***展示用笔记本在几公里以外控制JEEP Cherokee,2016年也是两位***对JEEP 自由光下手,成功控制了转向与刹车,当然,他们后边都找了份好工作。由此可见,两人是比较重要的,其实分工来说就是一个软件一个硬件,在勤劳的中国人里,软硬件都懂的人太多了,2人组合的部分人里,有人有下岗的风险。
国内对智能汽车、智能网联汽车研究起步较晚,对于智能汽车的信息系统研究应用的成果较少,但是国外也早不到哪里去,大多数停留在算法模型等基础研究。但是现在还没有统一的标准,对于行业乱象倒是一个不错的发展时机,看看谁能跑的出来,谁积累的更多。
电动化、网联化、智能化、共享化是汽车“新四化”的产业发展趋势,后续的智能汽车都会变成行驶在道路上的“超级计算机”,他们与交通、环境、人、车等交互,提供高效的智能服务。
传统的汽车设备中主要是以机械控制为主,电子控制单元为辅,机械经过长时间的测试改进,完备性极高,从而以机械控制为主的汽车安全性能较高。但是人们对舒适、方便、快捷程度需求,对汽车、外卖、物流等共享经济的兴起,人的出行模式发生了很大的改变。车企也由原来的B to C,转变成了C to B,电子、计算、通信等技术大量应用在汽车当中,就连一个中控屏都要死磕,与手机去争宠,可见,计算机电子通信技术极大提高了人们的驾驶体验,汽车越来越智能化。
这些汽车从原有的机械控制走向电子控制,那就产生了更多的ECU电子控制单元,初步估算,2015年宝马7系统上大约有130来个控制单元,现在应该差不多有150多个了吧。ECU控制单元综合了各个传感器的信息进行智能决策,向机械执行器下发指令,比如开关门锁、开关灯、动力、升窗等。ECU太多,成本就会升高,为了降低成本,现在又流行域控制器,分成不同的区域,实现模块化、集约化管理来降低“电控”部分的成本。
但是域控制器发展并不迅速,认证、测试、验证的周期会拉的比较长,那么现有的,就是电控越发达,ECU控制单元越多,那么同样,与外部通讯就会变得复杂,不同的域控制器,对应的就是这个区域的数据,开放数据给中央控制器,为了实现了中央控制器“让天下没有难做的生意”、“免费才是最贵”的“拿来主义”。
汽车电子控制单元(ECU)在车内网络中是通过CAN网络进行相互连接的,ECU之间的通信是通过CAN报文通信,在车内CAN总线上有留出外部总线接口或者诊断OBD接口,车内还有网关接口,外部的扩展采集数据终端可以通过这类接口连接到车内CAN总线。此外,车内配有蓝牙、WIFI等无线通信模块,可以通过无线方式连入CAN网络。
车载CAN协议采集ECU数据流向及渠道如下图所示:
1、通过物理OBD接口访问,适配工作可以通过车载OBD接口连接CAN网络,采用直连或诊断请求读取CAN总线上数据包,通过逆向分析CAN报文指令信息与原车实际发生数据做比对,获得汽车车身控制命令或者其他数据、状态CAN报文信息,重放相应的CAN报文控制指令,使汽车执行相应的功能,比如在钥匙状态下打开车门锁,实现远程、附近的解锁控制。但是有不少的汽车ECU已经休眠,有的需要发送一些数据帧先唤醒汽车总线。
2、通过短距离访问CAN接口。适配工作可以通过蓝牙、WIFI、5G、车载信息系统单元、远程信息终端、射频这些传输接口接入到CAN网络,向CAN网络发送指令。
3、通过长距离无线访问接口进行适配。通过5G网络和云服务,秒传秒连对车进行实时操作,将数据采集为远程数据,由于低延时的特点。后续都可以通过5G网络实时采集汽车数据,并对汽车实现控制,比如开灯、开门、开空调,甚至前进转向,通过高级的智能网关,连接到电信运营商,接入远程平台,实现控制汽车。
智能汽车、无人驾驶都需要这一领域的技术,作为汽车研究,也不开汽车CAN总线数据。否则,整车控制策略就无法得以实现,汽车运营平台就无法针对车型做全生命周期的数字化管理,汽车金融风险控制领域就无法保证他们的汽车资产安全,对于技术发展来说,现在数字化时代,数据是产业的石油和生命,不会去干高射炮打蚊子的蠢事。否则,医者整死一直小白鼠是分分钟的事。
来源:51CTO
作者:wx5e674d2bb2461
链接:https://blog.51cto.com/14750193/2477059