Logstash的配置

。_饼干妹妹 提交于 2020-03-10 08:26:48

MySql 到 Elasticsearch

input {
    jdbc {
        # 驱动jar包的位置
        jdbc_driver_library => "/usr/local/logstash/jdbc-driver-library/mysql-connector-java-8.0.19.jar"
        # 驱动类名
        jdbc_driver_class => "com.mysql.cj.jdbc.Driver"        
        # 数据库连接        
        jdbc_connection_string => "jdbc:mysql://127.0.0.1:3306/base_db?characterEncoding=utf8&autoReconnect=true&serverTimezone=Asia/Shanghai&zeroDateTimeBehavior=convertToNull"
        # mysql用户名
        jdbc_user => "root"
        # mysql密码
        jdbc_password => "123456"        
        # 数据库重连尝试次数        
        connection_retry_attempts => "3"
        # 开启分页查询(默认false不开启)
        jdbc_paging_enabled => true
        # 单次分页查询条数(默认100000,若字段较多且更新频率较高,建议调低此值)
        jdbc_page_size => "2"
        # 如果sql较复杂,建议配通过statement_filepath配置sql文件的存放路径;
        statement_filepath => "/usr/local/logstash/sql/t_sys_loginperson.sql"
        # 需要记录查询结果某字段的值时,此字段为true
        use_column_value => true        
        # 需要记录的字段,用于增量同步
        tracking_column => "last_modify_time"
        # 字段类型
        tracking_column_type => "timestamp"
        # 记录上一次运行记录
        record_last_run => true
        # 上一次运行记录值的存放文件路径
        last_run_metadata_path => "/usr/local/logstash/last-run-metadata/t_sys_loginperson.txt"
        # 是否清除last_run_metadata_path的记录,需要增量同步时此字段必须为false;
        clean_run => false
        # 设置时区 如果设置会将 last_modify_time 增加8小时
        #jdbc_default_timezone => "Asia/Shanghai"
        # 同步频率(分 时 天 月 年),默认每分钟同步一次;
        schedule => "* * * * *"
    }    
}
filter {
    json {
        source => "message"
        remove_field => ["message","@version"]
    }
}
output {        
    elasticsearch { 
        hosts => "127.0.0.1:9200"
        index => "%{table_name}" 
        document_id => "%{id}"
    }
} 

MySql 到 Kafka

input {
    jdbc {
        # 驱动jar包的位置
        jdbc_driver_library => "/usr/local/logstash/jdbc-driver-library/mysql-connector-java-8.0.19.jar"
        # 驱动类名
        jdbc_driver_class => "com.mysql.cj.jdbc.Driver"        
        # 数据库连接        
        jdbc_connection_string => "jdbc:mysql://127.0.0.1:3306/base_db?characterEncoding=utf8&autoReconnect=true&serverTimezone=Asia/Shanghai&zeroDateTimeBehavior=convertToNull"
        # mysql用户名
        jdbc_user => "root"
        # mysql密码
        jdbc_password => "123456"        
        # 数据库重连尝试次数        
        connection_retry_attempts => "3"
        # 开启分页查询(默认false不开启)
        jdbc_paging_enabled => true
        # 单次分页查询条数(默认100000,若字段较多且更新频率较高,建议调低此值)
        jdbc_page_size => "2"
        # 如果sql较复杂,建议配通过statement_filepath配置sql文件的存放路径;
        statement_filepath => "/usr/local/logstash/sql/t_sys_loginperson.sql"
        # 需要记录查询结果某字段的值时,此字段为true
        use_column_value => true        
        # 需要记录的字段,用于增量同步
        tracking_column => "last_modify_time"
        # 字段类型
        tracking_column_type => "timestamp"
        # 记录上一次运行记录
        record_last_run => true
        # 上一次运行记录值的存放文件路径
        last_run_metadata_path => "/usr/local/logstash/last-run-metadata/t_sys_loginperson.txt"
        # 是否清除last_run_metadata_path的记录,需要增量同步时此字段必须为false
        clean_run => false
        # 设置时区 如果设置会将 last_modify_time 增加8小时
        #jdbc_default_timezone => "Asia/Shanghai"
        # 同步频率(分 时 天 月 年),默认每分钟同步一次;
        schedule => "* * * * *"        
    }        
}
filter {
    mutate {
        # 删除字段
        remove_field => ["@timestamp","@version"]
    }
}
output {    
    kafka {        
        bootstrap_servers => "10.10.6.202:9092"
        topic_id => "base-db"            
        codec => "json"
        client_id => "kafkaOutPut"
    }
} 

Kafka 到 Elasticsearch

input {
    kafka {
        bootstrap_servers => "10.10.6.202:9092"
        client_id => "kafkaInPut"
        # 从最新一条开始读取
        auto_offset_reset => "latest"
        # 消费线程,一般是这个队列的partitions数
        consumer_threads => 3
        decorate_events => true
        # 队列名称
        topics => ["base-db"]
        codec => "json"        
    }
}
filter {
    mutate {
        # 删除字段
        remove_field => ["@timestamp","@version"]
    }
}
output {    
    elasticsearch {
        hosts => "10.10.6.202:9200"
        index => "%{table_name}"
        document_id => "%{id}"
    }    
}

t_sys_loginperson.sql 文件

select id,person_name,date_format(create_time, '%Y-%m-%d %H:%i:%s') as create_time,date_format(last_modify_time, '%Y-%m-%d %H:%i:%s') as last_modify_time,'t_sys_loginperson' as table_name from t_sys_loginperson where last_modify_time>:sql_last_value
注意 所有的日期类型需转为字符串类型
#带时分秒
date_format(create_time, '%Y-%m-%d %H:%i:%s')
#不带时分秒
date_format(create_time, '%Y-%m-%d')

启动

#单配置文件启动(后台启动)
nohup /usr/local/logstash/bin/logstash -f /usr/local/logstash/config/kafka2elasticsearch.conf > /dev/null 2>&1 &

多个pipeline启动多个配置文件

配置pipelines.yml

vi /usr/local/logstash/config/pipelines.yml
- pipeline.id: mysql
   pipeline.workers: 1
   pipeline.batch.size: 100
   path.config: "/usr/local/logstash/customize-config/mysql2kafka.conf"
 - pipeline.id: es
   queue.type: persisted
   path.config: "/usr/local/logstash/customize-config/kafka2elasticsearch.conf"

启动

#无需指定配置文件,默认走pipelines.yml的配置,如果使用-e或-f时,Logstash会忽略pipelines.yml文件
nohup /usr/local/logstash/bin/logstash > /dev/null 2>&1 &

多个pipeline备忘
https://blog.csdn.net/UbuntuTouch/article/details/100995868?depth_1-utm_source=distribute.pc_relevant.none-task&utm_source=distribute.pc_relevant.none-task

https://segmentfault.com/a/1190000016592277

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!