OpenCV处理直方图

不羁岁月 提交于 2020-03-06 02:57:04

直方图可以用来描述各种不同的事物,如物体的色彩分布、物体边缘梯度模板,以及表示目标位置的当前假设。

简单的说,直方图就是对数据进行统计,将统计值组织到一系列事先定义好的bin中。bin中的数值是从数据中计算出特征的统计量,这些数据可以是诸如梯度、方向、色彩或者任何其他特征。无论如何,直方图获得的是数据分布的统计图。通常直方图的维数要低于原始数据。

具体可参见:

http://docs.opencv.org/doc/tutorials/imgproc/histograms/histogram_calculation/histogram_calculation.html#histogram-calculation

下面参考《Learning OpenCV》一个例子。根据输入的图像计算出一个色相饱和度的2维直方图。

/**
  *    file:参考《learning OpenCV》P227
  *    author: Jacky_Liu
  *    date:   2013-12-06
  */

#include <QtCore/QCoreApplication>
#include <cv.h>
#include <highgui.h>

int main(int argc, char *argv[])
{
//    QCoreApplication a(argc, argv);
//    return a.exec();

    IplImage *src = NULL;

    if(argc != 2 || (src = cvLoadImage(argv[1], 1)) == 0)
    {
        printf("The number of the arguments is wrong, or the fail to load image.");
        return 0;
    }

    //转换颜色空间
    IplImage *hsv = cvCreateImage(cvGetSize(src), 8, 3);
    cvCvtColor(src, hsv, CV_BGR2HSV);

    //分割到3个独立通道的图像
    IplImage *h_plane = cvCreateImage( cvGetSize(src), 8, 1);
    IplImage *s_plane = cvCreateImage( cvGetSize(src), 8, 1);
    IplImage *v_plane = cvCreateImage( cvGetSize(src), 8, 1);

    IplImage *planes[] = {h_plane, s_plane};
    cvCvtPixToPlane(hsv, h_plane, s_plane, v_plane, 0);

    //建立直方图结构,并计算
    int h_bins = 30, s_bins = 32;
    CvHistogram *hist = NULL;

    //数组每一个元素对应直方图对应维数的bin的个数
    int hist_size[] = {h_bins, s_bins};
    //hue范围[0,180]
    float h_ranges[] = {0, 180};
    float s_ranges[] = {0, 255};
    float *ranges[] = {h_ranges, s_ranges};

    hist = cvCreateHist(2,                      //直方图维数为2维
                        hist_size,              //直方图每一维对应的bin数
                        CV_HIST_ARRAY,          //稠密矩阵存储
                        ranges,                 //直方图每一维的维数
                        1);                     //均匀直方图
    //计算直方图
    cvCalcHist(planes, hist, 0, 0);

    //显示2维直方图
    int scale = 20;
    IplImage *hist_img = cvCreateImage(cvSize(h_bins * scale, s_bins * scale),
                                       8, 3);
    cvZero( hist_img );

    float max_value = 0;
    cvGetMinMaxHistValue(hist, 0, &max_value, 0, 0);

    for(int h = 0; h < h_bins; h++)
    {
        for(int s = 0; s < s_bins; s++)
        {
            //获取bin对应的最大值
            float bin_val = cvQueryHistValue_2D(hist, h, s);
            //颜色归一化到[0,255]显示
            int intensity = cvRound( bin_val * 255 / max_value);
            //显示
            cvRectangle(
                        hist_img,
                        cvPoint( h*scale, s*scale),
                        cvPoint( (h+1)*scale - 1, (s+1)*scale - 1),
                        CV_RGB(intensity,intensity, intensity),
                        CV_FILLED
                        );
        }
    }
    cvNamedWindow("Source", 1);
    cvShowImage("Source", src);

    cvNamedWindow("H-S Histogram", 1);
    cvShowImage("H-S Histogram", hist_img);
    cvWaitKey(0);

    return 0;
}

 

 

 

标签
易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!